Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Microorganismos xerófilos cultivables de la zona semiárida de la Tatacoa (Colombia).

Culture xerophile microorganisms from the Tatacoa semiarid zone (Colombia).



Abrir | Descargar


Sección
Artículo Original Producto de Investigación

Cómo citar
Bolivar Torres, H. H., Méndez , Y. N., Sánchez Nieves, J., Leal , M. A., & Ruiz , E. M. (2021). Microorganismos xerófilos cultivables de la zona semiárida de la Tatacoa (Colombia). REVISTA NOVA , 19(36). https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1773

DOI
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Hermes Hernán Bolivar Torres

    Yael  Natalia Méndez 

      Jimena Sánchez Nieves

        María Angélica Leal 

          Elkin Marcelo Ruiz 


            Hermes Hernán Bolivar Torres,

            1. Laboratorio de microbiómica. Universidad Nacional Autónoma de México ENES Morelia. CVLAC: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000085665


            Yael  Natalia Méndez ,

            Grupo de Caracterización Tecnológica de Minerales. Departamento de Geociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá. CVLAC: http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001585081


            Jimena Sánchez Nieves,

            Profesora Asociada. Departamento de Biología. Facultad de Ciencias. Universidad Nacional de Colombia Sede Bogotá. ORCID: CVLAC: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000152773


            María Angélica Leal ,

            Docente PEAMA Sumapaz. Universidad Nacional de Colombia. CVLAC: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001445410


            Elkin Marcelo Ruiz ,

            Laboratorio microbiología del suelo. Departamento de Biología. Facultad de Ciencias. Universidad Nacional de Colombia Sede Bogotá. CVLAC: https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001640658


             

            Introducción. Los microorganismos xerófilos han adquirido una mayor relevancia para la realización de investigaciones relacionadas con sus mecanismos adaptativos frente al estrés hídrico, así como la caracterización e identificación de sus hábitats. En Colombia, las zonas semiáridas y desérticas como el desierto de la Tatacoa han sido poco estudiadas a nivel microbiano. Objetivo. Aislar y caracterizar microorganismos xerófilos provenientes del suelo de la zona semiárida de la Tatacoa del departamento del Huila (Colombia). Materiales y métodos. Se colectaron muestras en los sectores denominados localmente como Cuzco y La Victoria, las cuales fueron procesadas para el aislamiento de microorganismos xerófilos en medio selectivo M40Y para posterior caracterización macro y microscópica, así como evaluación mediante pruebas bioquímicas para la utilización de sustratos. Resultados. Fueron aislados 29 morfotipos entre los cuales se pudieron diferenciar: Bacilos y cocos Gram positivos presentes exclusivamente en el sector del Cuzco y bacterias filamentosas ramificadas (actinobacterias) únicamente en el sector de La Victoria. Se estableció la presencia de los géneros Streptomyces, Micrococcus y Corynebacterium. Conclusiones. La presencia de microorganismos relacionados con los géneros anteriormente mencionados permitirá comprender las posibles interacciones que se presentan en este ecosistema, lo que aportará al desarrollo de este lugar como un posible análogo para estudios de búsqueda de vida en otros planetas como Marte. Además, incentivar estudios más detallados donde se puedan recuperar microorganismos que sean de utilidad para diferentes procesos biotecnológicos.


            Visitas del artículo 1502 | Visitas PDF 447


            Descargas

            Los datos de descarga todavía no están disponibles.
            1. Gargaud M. Encyclopedia of astrobiology, Berlin: Springer Science & Business Media; 2011. https://www.springer.com/gp/book/9783642112744
            2. Scott W. Water Relations of Food Spoilage Microorganisms. Advances in Food Research. 1957;(7): 83-127. https://doi.org/10.1016/S0065-2628(08)60247-5
            3. Pitt J, Hocking A. Fungi and food Spoilage. Verlag: Springer. 2009. https://www.springer.com/gp/book/9780387922065
            4. Petrovič U, Gunde-Cimerman N, Zalar P. Xerotolerant mycobiota from high altitude anapurna soil, nepal. FEMS microbiology letters. 2000; 128(2): 339- 342. https://doi.org/10.1111/j.1574-6968.2000.tb08918.x
            5. Sharma A,Sharma R, Devi T. Life at extreme conditions: Extremophiles and their biocatalytic potential. En: 3rd International conference on recent advances in engineering science and management. Pune: 2017. https://www.semanticscholar.org/paper/Life-at-extreme-conditions%3A-Extremophiles-and-their-Sharma-Sharma/4ebc1e2814fe20fe66396856bdd8d130704b5762
            6. Srivastava A, Rai A, Kumar S, Kashyap P, Arora D. Extremophiles: Potential Sources of Biomolecules. En: Prakash S, Sharma R, Kunwar R. Recent advances in microbiology. Nueva York: NOVA; 2013. p.551-564. https://www.researchgate.net/publication/249314487_Extremophiles_Potential_Sources_of_Biomolecules
            7. Dion P. Soil Biology and Agriculture in the Tropics. Berlin: Springer; 2010. https://www.springer.com/gp/book/9783642050756
            8. Schulze-Makuch D, Houtkooper J. A perchlorate strategy for extreme xerophilic life on Mars. En: EPSC Abstracts. Rome; 2010. https://meetings.copernicus.org/epsc2010/abstracts/EPSC2010-308.pdf
            9. Stevenson A, Burkhardt J, Cockell C, Cray J, Dijksterhuis J, Fox-Powell M, et al. Multiplication of microbes below 0.690 eater activity: Implications for terrestrial and extraterrestrial life. Environmental microbiology. 2015; 17(2): 257-277. https://doi.org/10.1111/1462-2920.12598
            10. Lebre P, De Maayer P,Cowan D. Xerotolerant bacteria: surviving through a dry spell. Nature Reviews Microbiology. 2017; 15(5): 285-296. https://doi.org/10.1038/nrmicro.2017.16
            11. Okoro C, Brown R, Jones A, Andrews B, Asenjo J, Goodfellow M, et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile,Antonie Van Leeuwenhoek. 2009; 95(2): 121-133. https://pubmed.ncbi.nlm.nih.gov/19052913/
            12. Santhanam R, Okoro C, Rong C, Huang Y, Bull A, Weon H, et al. Streptomyces atacamensis sp. nov., isolated from and extreme hyper-arid soil of the Atacama Desert, Chile. International journal of systematic and evolutionary microbiology. 2012; 62(11): 2680-2684. https://doi.org/10.1099/ijs.0.038463-0
            13. Santhanam R, Rong X, Huang Y, Andrews B, Asenjo J, Goodfellow M. Streptomyces bullii sp. nov., isolated from a hyper-arid Atacama Desert soil. Antonie Van Leeuwenhoek. 2013; 103(2): 367- 373. https://doi.org/10.1007/s10482-012-9816-x
            14. Azua-Bustos A, Urrejola C, Vicuña R. Life at the dry edge: microorganisms of the Atacama Desert. FEBS Letters. 2012; 586(18): 2939-2945. https://doi.org/10.1016/j.febslet.2012.07.025
            15. Piubeli F, De Lourdes M, Kishi L, Henrique-Silva F, García M, Mellado E. Phylogenetic profiling and diversity of bacterial communities in the death valley, an extreme habitat in the atacama desert. Indian journal of microbiology. 2015; 55(4): 392- 399. https://doi.org/10.1007/s12088-015-0539-3
            16. Drees K, Neilson J, Betancourt J, Quade J, Henderson D, Pryor B, et al. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile,Applied and Environmental Microbiology. 2006; 72(12): 7902-7908. https://aem.asm.org/content/72/12/7902
            17. Direito S, Ehrenfreund P, Marees A, Staats M, Foing B, Roling W. A wide variety of putative extremophiles and large beta-diversity at the mars desert research station (utah). International Journal of Astrobiology. 2011; 10(3): 191-207. https://doi.org/10.1017/S1473550411000012
            18. Montero-Calasanz M, Goker M, Potter G, Rohde M, Sproer C, Schumann P, et al. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles. 2012; 16(6): 903-909. https://doi.org/10.1007/s00792-012-0486-4
            19. Mohammadipanah F, Wink J. Actinobacteria from arid and desert habitats: diversity and biological activity. Frontiers in microbiology. 2016; 6: 1541. https://doi.org/10.3389/fmicb.2015.01541
            20. Kurapova A, Zenova G, Sudnitsyn I. Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone,Microbiology. 2012;81: 98-108. https://doi.org/10.1134/S0026261712010092
            21. Taketani R, Kavamura V, Dos Santos S. Diversity and Technological Aspects of Microorganisms from Semiarid Environments. Diversity and Benefits of Microorganisms from the Tropics. 2017: 3-19. https://link.springer.com/chapter/10.1007/978-3-319-55804-2_1
            22. Cowan DA, Hopkins DW, Jones BE, Maggs-Kölling G, Majewska R, Ramond J-B. Microbiomics of Namib Desert habitats. Extremophiles [Internet]. 2020;24(1):17–29. https://doi.org/10.1007/s00792-019-01122-7
            23. Belov A, Cheptsov V, Vorobyova EA, Manucharova NA. Culturable Bacterial Communities Isolated from Cryo-Arid Soils : Phylogenetic Culturable Bacterial Communities Isolated from Cryo-Arid Soils : Phylogenetic and Physiological Characteristics. 2020;54(8): 95-104. http://dx.doi.org/10.1134/S0031030120080043
            24. Lombana A. Suelos Colombianos: Una mirada desde la academia. Bogotá: Universidad Jorge Tadeo Lozano; 2004. https://www.utadeo.edu.co/es/publicacion/libro/editorial/235/suelos-colombianos-una-mirada-desde-la-academia
            25. Florez M, Parra L, Jaramillo D, Jaramillo J. Paleosuelos del mioceno en el desierto de la tatacoa. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 2013; 37(143): 229-244. https://doi.org/10.18257/raccefyn.6
            26. Méndez YN. Identificación de bacterias nativas del desierto de Candelaria y Tatacoa (Colombia), sometidas a simulación de la radiación UV de Marte. Bogotá: Departamento de Ciencias Biológicas Universidad de los Andes; 2013. http://biblioteca.uniandes.edu.co/acepto22013220.php?id=3425.pdf
            27. Guerrero J. Stratigraphy and sedimentary environments of the Honda Group in the La Venta area. Miocene uplift of the Colombian Andes. En: Kay R, Madden R, Cifelli R, Flynn J. A history of Neotropical Fauna: Vertebrate Paleobiology of the Miocene of Tropical South America,, Washington D.C: Smithsonian Institution Press; 1994. p. 592. https://www.researchgate.net/publication/313608799_Stratigraphy_Sedimentary_Environments_and_the_Miocene_Uplift_of_the_Colombian_Andes
            28. Hermelin M. The Tatacoa Desert. En: Hermelin M. Landscapes and landforms of Colombia. New York: Springer; 2016. p. 127-138. https://www.springer.com/de/book/9783319117997
            29. Goodfellow M, Peter K, Busse H, Trujillo M, Ludwig W, Suzuki K. Part A. Bergey’s Manual of Systematic Bacteriology: Volume 5: The Actinobacteria. New York: Springer; 2012. https://www.springer.com/gp/book/9780387950433
            30. Winn W, Koneman E, Koneman W, Procop E, Schreckenberger G, Woods P, et al. Koneman diagnostico microbiológico: texto y atlas en color. Bogotá D.C.: Editorial Médica Panamericana; 2008. https://books.google.com.co/books/about/Koneman_Diagnostico_Microbiologico_Micro.html?hl=es&id=jyVQueKro88C&redir_esc=y
            31. Carroll K, Jorgensen J, Pfaller M. Manual of Clinical Microbiology, Washington D.C.: ASM Press; 2015. https://www.asmscience.org/content/book/10.1128/9781555817381
            32. Bull A, Asenjo J. Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie Van Leeuwenhoek. 2013; 103(6): 1173-1179. https://doi.org/10.1007/s10482-013-9911-7
            33. Santos SN, Gacesa R, Taketani RG, Long PF, Melo IS. Genome Sequence of Streptomyces caatingaensis CMAA 1322, a New Abiotic Stress-Tolerant Actinomycete Isolated from Dried Lake Bed Sediment in the Brazilian Caatinga Biome. Genome announcements. 2015; 3(5): 1015-1020. https://mra.asm.org/content/3/5/e01020-15.short
            34. Stevenson A, Hallsworth J. Water and temperature relations of soil actinobacteria. Environmental microbiology reports. 2014; 6(6): 744-755. https://doi.org/10.1128/genomea.01020-15
            35. Zvyagintsev D, Zenova G, Doroshenko E, Gryadunova A, Gracheva T, Sudnitsyn I. Actinomycete growth in conditions of low moisture. Biology Bulletin. 2007; 34(3): 242-247. https://doi.org/10.1134/S1062359007030053
            36. Anandan R, Dharumadurai D, Manogaran GP. An introduction to actinobacteria. En: Dharumadurai D, Jiang Y. Actinobacteria-Basics and Biotechnological Applications. InTech; 2016. https://www.intechopen.com/books/actinobacteria-basics-and-biotechnological-applications/an-introduction-to-actinobacteria
            37. Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Samantaray B. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci. 2015;108:1280–1287. https://www.jstor.org/stable/24905489
            38. Ávila I, Rodríguez M, Franco M, Pedroza A, Gutierrez I. Use of agricultural wastes for biomass production of the plant growth promoter actinobacteria, streptomyces sp. mcr26. Journal of Experimental Biology and Agricultural Sciences. 2014;2(5): 460- 472. https://www.intechopen.com/books/actinobacteria-basics-and-biotechnological-applications/an-introduction-to-actinobacteria
            39. Sivaraman G, Siva V. Microbiological spoilage of dried dishes. SSRN. 2015;2709070: 1-5. https://dx.doi.org/10.2139/ssrn.2709070
            40. Dilbaghi N, Sharma S. Food spoilage, food infections and intoxications caused by microorganisms and methods for their detection. 2007. https://www.semanticscholar.org/paper/Food-spoilage%2C-food-infections-and-intoxications-by-Dilbaghi-Sharma/bf1979600620a-165f83e3e27433c6121531aeb9f
            41. Hocking A, Isolation and identication of xerophilic fungi in stored commodities. En: Champ B, Highley E, Hocking A, Pitt J. Fungi and Mycotoxins in Stored Products, Canberra: Australian Centre for International Agricultural Research; 1991. p. 266. https://ageconsearch.umn.edu/record/134649/files/PR036.pdf#page=62
            42. Nicolaus B, Manca M, Lama L, Esposito E, Gambacorta A. Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biology. 2001; 24(1): 1-8. https://doi.org/10.1007/s003000000156
            43. Satyanarayana T, Raghukumar C, Shivaji S. Extremophilic microbes: Diversity and perspectives. Current Science. 2005: 78-90. https://www.researchgate.net/publication/298223942_Extremophilic_microbes_Diversity_and_perspectives
            44. Fredsgaard C, Moore D, Al Soudi D, Crisler D, Chen F, Clark B, et al. Relationships between sucretolerance and salinotolerance in bacteria from hypersaline environments and their implications for the exploration of mars and the icy worlds. International Journal of Astrobiology.2016: 1-7. https://doi.org/10.1017/S1473550416000240
            45. Rillig M, Lehmann A, Aguilar-Trigueros CA, Antonovics J, Caruso T, Hempel S, et al. J. Soil microbes and community coalescence. Pedobiología. 2016; 59(1): 37-40. https://doi.org/10.1016/j.pedobi.2016.01.001
            46. Tse C, Ma K. Growth and metabolism of extremophilic microorganisms. En: P. Rampelotto. Biotechnology of Extremophiles. Springer; 2016. p. 1-46. https://link.springer.com/chapter/10.1007/978-3-319-13521-2_1
            47. Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, et al. Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci U S A. 2020;117(20):10681–10687. https://doi.org/10.1073/pnas.2001613117
            48. Narvaez-Reinaldo J, Barba I, Gonzalez-Lopez J, Tunnacliffe MM. Rapid method for isolation of desiccation-tolerant strains and xeroprotectants. Applied and environmental microbiology. 2010; 76(15): 5254-5262. https://aem.asm.org/content/76/15/5254
            49. Vilchez S, Manzanera M. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Applied microbiology and biotechnology. 2011; 91(5): 1297-1304. https://doi.org/10.1007/s00253-011-3461-6
            50. Chen G, XR J. Next generation industrial biotechnology based on extremophilic bacteria. Current opinion in biotechnology. 2018; 50(94): 94-100. https://doi.org/10.1016/j.copbio.2017.11.016
            Sistema OJS 3.4.0.5 - Metabiblioteca |