Células hep-2 infectadas con eb’s de chlamydia trachomatis serovar 2 (vr-902b)
Hep-2 cells infected with eb’s from chlamydia trachomatis serovar 2 (vr-902b): research perspectives
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos.
Mostrar biografía de los autores
Chlamydia trachomatis (C. trachomatis) es una bacteria Gram negativa inmovil, se caracteriza por ser un microorganismo intracelular obligado y por poseer un ciclo reproductivo en el que puede distinguirse una forma infecciosa extracelular metabólicamente inerte (cuerpo elemental - EB’s), y una forma no infecciosa intracelular y activa (cuerpo reticulado - RB’s). C trachomatis se caracteriza por causar infección en humanos, está relacionada con enfermedades de transmisión sexual e infecciones oculares, por lo que puede conllevar a secuelas de interés si no se da un tratamiento oportuno. El objetivo de este estudio fue optimizar el modelo de infección de C. trachomatis en células HEp-2 con cuerpos elementales (EB’s) de C. trachomatis serovar L2. Inicialmente, se establecieron las condiciones para el crecimiento adecuado de las células HEp-2 en tiempo y con una confluencia del 90%, para continuar con la optimización de un protocolo de infección. La infección fue confirmada a partir de la coloración con Giemsa permitiendo evaluar características morfológicas tanto de las células HEp-2 sin infectar e infectadas y así mismo de los cuerpos elementales de C. trachomatis. Finalmente, se corroboró la infección con la técnica de Inmunofluorescencia directa que detecta la proteína de membrana MOMP de C. trachomatis. Tras los ensayos realizados se evidenció la presencia de cuerpos elementales próximos y dentro del citoplasma celular, así como células vacuoladas y daño celular causado por la infección.
Visitas del artículo 351 | Visitas PDF 176
Descargas
Ramírez N Gloria, Vera A. Víctor J, Villamil J, Luis C. Cultivos Celulares, Elemento Fundamental para la Investigación. Revista Acovez. 2018;24(1).
2. Toolan HW. Transplantable human neoplasms maintained in cortisone-treated laboratory animals: H.S. No. 1; H.Ep. No. 1; H.Ep. No. 2; H.Ep. No. 3; and H.Emb.Rh. No. 1. Cancer research. 1954;14(9):660-6.
3. Instituto nacional de seguridad y salud en el trabajo. Chlamydia trachomatis- Fichas de agentes biológicos- DB-B-C.tr-16 España2016 [cited 2017]. Available from: https://www.insst.es/documents/94886/353495/Clamydia+trachomatis+2017.pdf/471a1569-928f-4c86-938b-9afd06ee360f?version=1.0.
4. Cardona-Arias JA, Gallego-Atehortúa LH, Ríos-Osorio LA. Infección por Chlamydia trachomatis en pacientes de una institución de salud de Bogotá y Medellín, 2012-2015. Revista chilena de infectología. 2016;33:513-8.
5. MARTÍNEZ T. MA. Diagnóstico microbiológico de Chlamydia trachomatis: Estado actual de un problema. Revista chilena de infectología. 2001;18:275-84.
6. ATCC. Chlamydia trachomatis (ATCC® VR-902B™) 2019 [cited 2017 8 abril 2017]. Available from: https://www.atcc.org/en/Products/Cells_and_Microorganisms/Viruses/Chlamydia_and_Rickettsia/VR-902B.aspx.
7. Jutinico Shubach AP, Mantilla Galindo A, Sánchez Mora RM. Regulación de la familia de proteínas BCLl-2 en células infectadas con Chlamydia Trachomatis. Nova. 2015;13:83-92.
8. Engstrom P, Bergstrom M, Alfaro AC, Syam Krishnan K, Bahnan W, Almqvist F, et al. Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication. International journal of medical microbiology : IJMM. 2015;305(3):378-82.
9. Pajaniradje S, Mohankumar K, Pamidimukkala R, Subramanian S, Rajagopalan R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed research international. 2014;2014:474953.
10. Jutinico Shubach A, Malagón Garzón E, Sánchez Mora R. Cultivo de la línea celular HEp-2: doblaje poblacional y coloración con Giemsa Perspectivas para el estudio de la infección con Chlamydia trachomatis. Nova. 2013;11:23-33.
11. Nans A, Saibil HR, Hayward RD. Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cellular microbiology. 2014;16(10):1457-72.
12. da Cunha M, Pais SV, Bugalhao JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PloS one. 2017;12(6):e0178856.
13. Derrick T, Last AR, Burr SE, Roberts CH, Nabicassa M, Cassama E, et al. Inverse relationship between microRNA-155 and -184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection. BMC infectious diseases. 2016;16:60.
14. Richard Coico. Current Protocols in Microbiology. 2006 2019. In: Wiley Microbiology & Virology [Internet]. Available from: https://www.wiley.com/en-co/Current+Protocols+in+Microbiology-p-9780471729242.
15. Vicetti Miguel RD, Henschel KJ, Duenas Lopez FC, Quispe Calla NE, Cherpes TL. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units. Journal of microbiological methods. 2015;119:79-82.
16. Ibana JA, Sherchand SP, Fontanilla FL, Nagamatsu T, Schust DJ, Quayle AJ, et al. Chlamydia trachomatis-infected cells and uninfected-bystander cells exhibit diametrically opposed responses to interferon gamma. Scientific reports. 2018;8(1):8476.
17. Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. MicrobiologyOpen. 2014;3(4):544-56.
18. Al-Zeer MA, Al-Younes HM, Lauster D, Abu Lubad M, Meyer TF. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNG-inducible guanylate binding proteins. Autophagy. 2013;9(1):50-62.
19. Giakoumelou S, Wheelhouse N, Brown J, Wade J, Simitsidellis I, Gibson D, et al. Chlamydia trachomatis infection of human endometrial stromal cells induces defective decidualisation and chemokine release. Scientific reports. 2017;7(1):2001.
20. Soysa P, Jayarthne P, Ranathunga I. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells. BMC complementary and alternative medicine. 2018;18(1):78.
21. Cochrane M, Armitage CW, O'Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future microbiology. 2010;5(12):1833-56.
22. Nogueira AT, Braun KM, Carabeo RA. Characterization of the Growth of Chlamydia trachomatis in In Vitro-Generated Stratified Epithelium. Frontiers in cellular and infection microbiology. 2017;7:438.
23. Carrera Páez LC, Pirajan Quintero ID, Urrea Suarez MC, Sanchez Mora RM, Gómez Jiménez M, Monroy Cano LA. Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis. Nova. 2015;13:17-29.
24. Gutiérrez DL, Sánchez Mora RM. Tratamientos alternativos de medicina tradicional para Chlamydia trachomatis , agente causal de una infección asintomática. Nova. 2018;16:65-74.
25. Sherrid AM, Hybiske K. Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells. Infection and immunity. 2017;85(5).
26. Nguyen PH, Lutter EI, Hackstadt T. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLoS pathogens. 2018;14(3):e1006911.