Skip to main navigation menu Skip to main content Skip to site footer

Percepción de los estudiantes de programas de salud sobre el uso de una herramienta de realidad aumentada en prácticas anatómicas

Percepción de los estudiantes de programas de salud sobre el uso de una herramienta de realidad aumentada en prácticas anatómicas




Section
Artículo Original

How to Cite
Percepción de los estudiantes de programas de salud sobre el uso de una herramienta de realidad aumentada en prácticas anatómicas. (2023). NOVA, 21(40), 95-105. https://doi.org/10.22490/24629448.6918

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Introduction: Augmented reality in the medical field has continuously grown, supporting theoretical and practical components. This technology presents a safe environment for experimentation for health science students. Objective: This research analyses the acceptance of health science students with the augmented reality tool HOLOMARKERS. It allows the user to place virtual pins on human biological material to achieve labelling of tissues, muscles, and organs, avoiding direct contact with the sample. Methodology: A technology acceptance model analyses the influence of HOLOMARKERS on student acceptance. Each core of the model has four Likert-scale questions. The sample size surveyed is 17 health science students. Four cores structure a technology acceptance model: theoretical background, acceptance of use, perceived ease of use and perceived usefulness of use; analyses of the acceptance of HOLOMARKERS by students. Results: Perceived usefulness of the tool and the students' previous theoretical background influence the acceptance of tool. Conclusion: The students surveyed highlighted the usefulness of HOLOMARKERS for developing practices in the macroscopic anatomy laboratory with human biological material.


Article visits 83 | PDF visits 82


Downloads

Download data is not yet available.
  1. Mann S, Novintan S, Hazemi-Jebelli Y, Faehndrich D, others. Medical Students' corner: lessons from COVID-19 in equity, adaptability, and Community for the Future of medical education. JMIR Medical Education. 2020;6(2):e23604.
  2. https://doi.org/10.2196/23604
  3. Parekh P, Patel S, Patel N, Shah M. Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Visual Computing for Industry, Biomedicine, and Art. 2020;3-20.
  4. https://doi.org/10.1186/s42492-020-00057-7
  5. Álvarez de Weldefort, A., & Campuzano, S. (1). Control de la contaminación biológica en los laboratorios de docencia de la Universidad Colegio Mayor de Cundinamarca en Bogotá, Colombia. NOVA, 1(1). https://doi.org/10.22490/24629448.1052.
  6. Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems. 1994;77(12):1321-9.
  7. Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A. Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information. 2015;4(4):2842-89.
  8. https://doi.org/10.3390/ijgi4042842
  9. Díaz Zamora W, León Guatame AX, Robayo-Pinzon O. Comercialización social de la donación de órganos en Colombia: un estudio exploratorio. Health Marketing Quarterly. 2020;37(3):232-44.
  10. https://doi.org/10.1080/07359683.2020.1802982
  11. Vargas Hernández, J., & Gacharná de Beltrán, H. (2008). Capacidad de búsqueda bibliográfica: investigación formativa con estudiantes de Bacteriología y Laboratorio Clínico de la Universidad Colegio Mayor de Cundinamarca. NOVA, 6(9). https://doi.org/10.22490/24629448.399.
  12. https://doi.org/10.22490/24629448.399
  13. Gerup J, Soerensen CB, Dieckmann P. Augmented reality and mixed reality for healthcare education beyond surgery: an integrative review. Int J Med Educ. 2020;11:1.
  14. https://doi.org/10.5116/ijme.5e01.eb1a
  15. Millan, J., & Yunda, L. (2014). An Open-Access Web-based Medical Image Atlas for Collaborative Medical Image Sharing, Processing, Web Semantic Searching and Analysis with Uses in Medical Training, Research and Second Opinion of Cases. NOVA, 12(22). https://doi.org/10.22490/24629448.1036
  16. https://doi.org/10.22490/24629448.1036
  17. Ha HG, Hong J. Augmented Reality in Medicine. Hanyang Medical Reviews. 2016;36(4):242.
  18. https://doi.org/10.7599/hmr.2016.36.4.242
  19. Hanna MG, Ahmed I, Nine J, Prajapati S, Pantanowitz L. Augmented reality technology using Microsoft HoloLens in anatomic pathology. Arch Pathol Lab Med. 2018;142(5):638-44.
  20. https://doi.org/10.5858/arpa.2017-0189-OA
  21. Maniam P, Schnell P, Dan L, Portelli R, Erolin C, Mountain R, et al. Exploration of temporal bone anatomy using mixed reality (HoloLens): development of a mixed reality anatomy teaching resource prototype. Journal of Visual Communication in Medicine. 2020;43(1):17-26.
  22. https://doi.org/10.1080/17453054.2019.1671813
  23. Stojanovska M, Tingle G, Tan L, Ulrey L, Simonson-Shick S, Mlakar J, et al. Mixed reality anatomy using Microsoft HoloLens and cadaveric dissection: a comparative effectiveness study. Med Sci Educ. 2020;30(1):173-8.
  24. https://doi.org/10.1007/s40670-019-00834-x
  25. Barroso Osuna J, Cabero Almenara J, Moreno Fernández AM. La utilización de objetos de aprendizaje en Realidad Aumentada en la enseñanza de la medicina. Innoeduca International Journal of Technology and Educational Innovation. 2016 Nov 27;2(2):77.
  26. https://doi.org/10.20548/innoeduca.2016.v2i2.1955
  27. Pelanis E, Kumar RP, Aghayan DL, Palomar R, Fretland ÅA, Brun H, et al. Use of mixed reality for improved spatial understanding of liver anatomy. Minimally Invasive Therapy & Allied Technologies. 2020;29(3):154-60.
  28. https://doi.org/10.1080/13645706.2019.1616558
  29. Karambakhsh A, Kamel A, Sheng B, Li P, Yang P, Feng DD. Deep gesture interaction for augmented anatomy learning. International Journal of Information Management. 2019;45:328-36.
  30. https://doi.org/10.1016/j.ijinfomgt.2018.03.004
  31. Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14(3):525-35.
  32. https://doi.org/10.1007/s11548-018-1814-7
  33. Sirilak S, Muneesawang P. A new procedure for advancing telemedicine using the HoloLens. Ieee Access. 2018;6:60224-33.
  34. https://doi.org/10.1109/ACCESS.2018.2875558
  35. Saito Y, Sugimoto M, Imura S, Morine Y, Ikemoto T, Iwahashi S, et al. Intraoperative 3D hologram support with mixed reality techniques in liver surgery. Annals of Surgery. 2020;271(1):e4-e7.
  36. https://doi.org/10.1097/SLA.0000000000003552
  37. Richardson T, Gilbert S, Holub J, MacAllister A, Thompson F, Radkowski R, et al. Fusing self-reported and sensor data from mixed-reality training. 2014;
  38. Evans G, Miller J, Pena MI, MacAllister A, Winer E. Evaluating the Microsoft HoloLens through an augmented reality assembly application. In: Degraded environments: sensing, processing, and display 2017. 2017. p. 282-97.
  39. https://doi.org/10.1117/12.2262626
  40. Pérez-Muñoz A, Garzón-Martínez M, Pineda-Gómez AI, Miranda-Cruz ÁD, Villamizar-Gómez L. Acquired skills with laparoscopic simulators in gynaecological laparoscopic surgery training programs: A review of reviews. Vol. 20, Educacion Medica. Elsevier Espana S.L.U; 2019. p. 309-24.
  41. https://doi.org/10.1016/j.edumed.2018.10.013
  42. Eckert M, Volmerg JS, Friedrich CM, others. Augmented reality in medicine: systematic and bibliographic review. JMIR Mhealth Uhealth. 2019;7(4):e10967.
  43. https://doi.org/10.2196/10967
  44. Munzer BW, Khan MM, Shipman B, Mahajan P. Augmented reality in emergency medicine: a scoping review. J Med Internet Res. 2019;21(4):e12368.
  45. https://doi.org/10.2196/12368
  46. Cabero Almenara J, Barroso Osuna J, Obrador M. Augmented reality applied to the teaching of medicine. Educacion Medica. 2017 Jul 1;18(3):203-8.
  47. https://doi.org/10.1016/j.edumed.2016.06.015
  48. Robinson BL, Mitchell TR, Brenseke BM. Evaluating the use of mixed reality to teach gross and microscopic respiratory anatomy. Medical Science Educator. 2020;30(4):1745-8.
  49. https://doi.org/10.1007/s40670-020-01064-2
  50. Kumar N, Pandey S, Rahman E. A novel three-dimensional interactive virtual face to facilitate facial anatomy teaching using Microsoft HoloLens. Aesthetic Plastic Surgery. 2021;45(3):1005-11.
  51. https://doi.org/10.1007/s00266-020-02110-5
  52. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Vol. 41, Medicine and Science in Sports and Exercise. 2009. p. 3-12.
  53. https://doi.org/10.1249/MSS.0b013e31818cb278
  54. Nagy JT. Evaluation of online video usage and learning satisfaction: An extension of the technology acceptance model. International Review of Research in Open and Distributed Learning. 2018;19(1).
  55. https://doi.org/10.19173/irrodl.v19i1.2886
  56. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2021. Available from: https://www.R-project.org/
Sistema OJS 3.4.0.5 - Metabiblioteca |