Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis

Contenido principal del artículo

Autores

Laura Camila Carrera Páez
Ingrid Daniela Pirajan Quintero
María Camila Urrea Suarez
Ruth Melida Sanchez Mora
Martha Gómez Jiménez
Luz Adriana Monroy Cano

Resumen

Objetivo. Estandarizar el cultivo de células HeLa en diferentes condiciones, con el fin de utilizarlo en protocolos de infección con Chlamydia trachomatis serovar L2. Materiales y métodos. Este estudio se llevó a cabo en cuatro fases principales que son: 1.Viabilidad celular por la técnica de azul de tripán y su posterior observación, 2. Estandarización del cultivo de células HeLa, 3. Coloración de Giemsa, 4. Cultivo de células HEp-2.Resultados. Se determinó que la línea celular HeLa debe ser cultivada en medio DMEM, 0,1% de L- glutamina, 10% de SFB. Así mismo, que la coloración de Giemsa es mejor realizarla en un tiempo de 40 minutos por que se evidencia una clara definición de núcleo y citoplasma. Frente a la comparación de las dos líneas celulares se obtuvo que la línea HeLa desde el primer día muestra un crecimiento adecuado y alcanza rápidamente la confluencia esperada, en contraposición la línea HEp-2 presenta un crecimiento más lento pero alcanzando la confluencia deseada al último día.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1.BastidasRJ,ElwellCA,Engel JN,Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med.2013May 1; 3(5). http://perspectivesinmedicine.cshlp.org/content/3/5/a010256.long. (ultimo acceso 17 de junio de 2014)

2.JorgensenI,BednarMM,Amin V,Davis BK,Ting JP,McCafferty DG,Valdivia RH. The Chlamydia protease CPAF regulates host and bacterial proteins to maintain pathogen vacuole integrity and promote virulence. Cell Host Microbe.2011Jul 21; 10(1): 21-32. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147293/ (ultimo acceso 17 de junio 2014)

3.Choroszy-Król IC,Frej-MÄ…drzak M,Jama-Kmiecik A,Bober T,Jolanta Sarowska J. Characteristics of the Chlamydia trachomatis species - immunopathology and infections. Adv Clin Exp Med.2012Nov;21(6):799-808.

4. Joyce A Ibana,Leann Myers,Constance Porretta,Maria Lewis,Stephanie N Taylor, David H MartinandAlison J Quayle. The major CD8 T cell effector memory subset in the normal andChlamydia trachomatis-infected human endocervix is low in perforin. BMC Immunology. 2012 Dec 12: 13. http://www.biomedcentral.com/1471-2172/13/66. (ultimo acceso 05 de octubre de 2014)

5. Clotilde Vallejos M, Guerra Ml Á, López Villegas M R, J. Valdez García A , Pría Kasusky P. Cérvico-vaginitis por Chlamydia trachomatis en mujeres atendidas en un hospital de Acatlán de Osorio, Puebla. Enf Inf Microbiol. 2010 abr-jun. 30(2): 49-52. Disponible en : http://www.medigraphic.com/pdfs/micro/ei-2010/ei102c.pdf (ultimo acceso 06 de septiembre 2014)

6. Martínez M. A, Diomedi Alexis P, Kogan A.Ricardoy Borie P C. Taxonomía e importancia clínica de las nuevas familias del orden Chlamydiales. Rev. chil. infectol. 2001; 18(3): 203-211. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182001000 300007 &lng=es. http://dx.doi.org/10.4067/S0716-10182001000300007. (Ultimo acceso 15 de julio 2014)

7. Health topics Trachoma and Epidemiology. Organización Mundial de la Salud. 2013. Disponible en: http://search.who.int/search?q=chlamydia+trachomatis+epidemiology&ie=utf8&client=_en_r&proxystylesheet=_en_r&output=xml_no_dtd&oe=utf8&getfields=doctype&site=amro_alia. (ultimo acceso 2013 septiembre 15)

8. Molano M, Weiderpass E, Posso H, Morre SA, Ronderos M, Franceschi S, et al; HPV Study Group. Prevalence and determinants of Chlamydia trachomatis infections in women from Bogota, Colombia. Sex Transm Infect. 2003. 79:474-478. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1744784/ (ultimo acceso 2 de mayo 2014)

9. Cheng W, Shivshankar P, Zhong Y, Chen D, Li Z, Zhong G. Intracellular interleukin-1alpha mediates interleukin-8 production induced by Chlamydia trachomatis infection via a mechanism independent of type I interleukin-1 receptor. Infection and immunity. 2008:76(3):942-51 Disponible en: http://www.ncbi.nlm.nih.gov/pmc /articles/PMC2258806/ (ultimo acceso 2 de mayo de 2014)

10. Marti H, Koschwanez M, Pesch T, Blenn C, Borel N. Water-filtered infrared an irradiation in combination with visible light inhibits acute chlamydial infection. PloS one. 2014: 9(7): http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102239 (ultimo acceso 16 de julio 2014)

11. HeLa: Las primeras células humanas inmortales. NeoTeo. 2009: Disponible en: http://www.neoteo.com/hela-las-primeras-celulas-humanas-inmortales-15154/. (ultimo acceso 05 de octubre 2013)

12. DRA. Anticuerpos Antinucleares (ANA) en células Hep-2. Sociedad chilena de alergia e inmunologia: Disponible en: http://www.scai.cl/node/28 (ultimo acceso 08 de diciembre 2014)

13. Invitrogen G. Cell culture basics. Life technologies. 2014; Disponible en: http://www.lifetechnologies.com/gibco-cell-culture-basics (ultimo acceso 14 de octubre 2014).

14. Adriana Paola Juntinico Shubach, Johanna Nathaly Manrique Chacón. Estandarización del cultivo celular de HEp-2 y las perspectivas para evaluar péptidos antimicrobianos en células infectadas con Chlamydia trachomatis Colombia. Tesis de grado. Universidad colegio mayor de Cundinamarca; 2013.

15. Innovación Científica en Biología Molecular y Celular. Cientifica Senna S.A. de C.V. 2014: Disponible en: http://www.cientificasenna.com/ index.php?modulo=catalogo&accion=articulo&id=1552 (ultimo acceso 12 de julio 2014)

16. Escobar M Lina maría, Morantes Sandra, Cordero Claudia P., Aristizábal Fabio A. Implementación de estrategias in vitro para evaluar la funcionalidad de un suero fetal bovino colombiano. Rev. colomb. cienc. quim. farm. 2011. 40(2): 201-221. Disponible en: http://www.scielo.org.co/ scielo.php?script=sci_arttext&pid=S0034- 74182011000200005&lng=en (ultimo acceso 01 de agosto de 2014)

17. Obtención de un frotis sanguíneo y tinción de giemsa. Wikifisiologia. 2014 :Disponible en: http://wiki.fisiologia.me/images/4/49/Cris2.pdf. (ultimo acceso 08 de agosto 2014)

18. Diagnostica I. coloracion de giemsa. IHR diagnostica. 2007. Disponible en: http://www.ihrdiagnostica.com/tecnicas/pdf/ColoracionGIEMSAv2.pdf. (ultimo acceso 07 de junio 2014)

19. Stoker MGP, Smith, K. M. & Ross, R. W. Electron Microscope Studies of HeLa Cells Infected with Herpes Virus. J gen Microbiol.1958.19: 244-249 Disponible en: http://mic.sgmjournals.org/ content/journal/micro/ 10.1099/00221287-19-2-244 (ultimo acceso 2 de junio de 2014)

20. James E. Darnell J. Adsorption and maturation of poliovirus singly and multiply infected HeLa cells. Jorurnal of experimental medicine. 1958:107 (5):633-641 Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles /PMC2136847/ (ultimo acceso 25 agosto 2014).

21. Minato N,Takeda A,Kano S,Takaku F. Studies of the Functions of Natural Killer-Interferon System in Patients with Sjogren Syndrome. the journal of clinical investigation. 1982. 69(3), 581–588. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC371014/ (ultimo acceso 21 de mayo de 2014)

22. Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE. Apple derived cellulose scaffolds for 3D mammalian cell culture. PloS one. 2014;9(5): Disponible en: http://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0097835 (ultimo acceso 21 de julio 2014) .

23. Tsugeno Y, Sato F, Muragaki Y, Kato Y. Cell culture of human gingival fibroblasts, oral cancer cells and mesothelioma cells with serum-free media, STK1 and STK2. Biomedical reports. 2014;2(5):644-8. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106576/ (Ultimo acceso 24 de julio 2014)

24. Hegde S, Spergser J, Brunthaler R, Rosengarten R, Chopra-Dewasthaly R. In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. International journal of medical microbiology : IJMM. 2014. 304(8), 1024–1031. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282308/ (Ultimo acceso 19 de agosto 2014)

25. Wong YH, Tan WY, Tan CP, Long K, Nyam KL. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines. Asian Pacific journal of tropical biomedicine. 2014;4(Suppl 1). Disponible en: http://www.sciencedirect.com/science/article/pii/S2221169115303191 ( u ltimo acceso 04 de septiembre 2014).

26. Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H. Evaluation of Chemical Fluorescent Dyes as a Protein Conjugation Partner for Live Cell Imaging. PloS one. 2014; 9(9). Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106271(ultimo acceso 10 de octubre de 2014).

27. Thiede B, Koehler CJ, Strozynski M, Treumann A, Stein R, Zimny-Arndt U, Schmid M, Jungblut PR.. High Resolution Quantitative Proteomics of HeLa Cells Protein Species Using Stable Isotope Labeling with Amino Acids in Cell Culture(SILAC), Two-Dimensional Gel Electrophoresis(2DE) and Nano-Liquid Chromatograpohy Coupled to an LTQ-OrbitrapMass Spectrometer. Mol Cell Proteomics. 2013. 12(2), 529–538. Disponible en: http://www.mcponline.org/content/12/2/529.long (ultimo acceso 15 de julio de 2014)

28. Chen TR. Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes. Cytogenetics and cell genetics. 1988;48(1):19-24.

29. Pajaniradje S, Mohankumar K, Pamidimukkala R, Subramanian S, Rajagopalan R. Antiproliferative and apoptotic effects of Sesbania grandiflora leaves in human cancer cells. BioMed research international. 2014; Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053233/ (ultimo acceso 03 de septiembre de 2014)

30. Arevalo-Pinzon G, Curtidor H, Munoz M, Patarroyo MA, Patarroyo ME. Synthetic peptides from two Pf sporozoite invasion-associated proteins specifically interact with HeLa and HepG2 cells. Peptides. 2011;32(9):1902-8. Disponible en: http://www.sciencedirect.com/ science/article/pii/ S0196978111003275 (ultimo acceso 21 de agosto 2014)

31. Himeda T, Hosomi T, Okuwa T, Muraki Y, Ohara Y. Saffold virus type 3 (SAFV-3) persists in HeLa cells. PloS one. 2013;8(1). Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053194 (ultimo acceso 28 de septiembre 2014)

32. Li L, Wang L, Xiao R, Zhu G, Li Y, Liu C, et al. The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells. Bioscience reports. 2012;32(2):171-86.
==========================================
DOI: http://dx.doi.org/10.22490/24629448.1371

Descargas

La descarga de datos todavía no está disponible.

Artículos más leídos del mismo autor/a