Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés

Contenido principal del artículo

Autores

Judith Elena Camacho Kurmen Gloria González Bernadette Klotz

Resumen

Las microalgas son fuente de un gran número de compuestos bioactivos de interés industrial, como los carotenoides que se utilizan como colorantes naturales en alimentación animal y humana, así como en la industria farmacéutica, cosmética y en la acuicultura. Además se han propuesto como agentes efectivos en la prevención de una variedad de enfermedades, debido a su capacidad antioxidante, inmunoregulaora, anti-inflamatoria y anti-cancerígena.
 
El ketocarotenoide astaxantina es el más importante desde el punto de vista biotecnológico. Hoy la mayor cantidad de astaxantina es producida por síntesis química y es vendida a un precio de US $2500/kg. El alto precio y el incremento en la demanda para este compuesto, es pecialmente de origen natural, en las diferentes industrias, hace que sea de interés la producción astaxantina a partir de microalgas como el
Haematococcus pluvialis, que acumula cantidades importantes (más del 4%/g de peso seco) y de mejor calidad que las obtenidas por otras fuentes como levaduras y plantas.
 
La acumulación del pigmento en H. pluvialis ocurre durante la transformación de la microalga desde el estado vegetativo (fase verde) a aplanospora (fase roja) cuando cesa su crecimiento en la fase estacionaria. Los tipos de estrés que inducen a la acumulación de astaxantina son temperatura, intensidad lumínica, ciclos de luz/oscuridad, concentración de nutrientes, pH, especies reactivas de oxígeno, sales y presencia de inhibidores de procesos metabólicos a diferente nivel. Es importante resaltar que esta microalga es de difícil cultivo; así como en la obtención del pigmento en cantidades de interés, debido a su ciclo celular complejo. De igual forma, un mayor entendimiento de las bases moleculares de la relación -condiciones de estrés-inducción- acumulación de astaxantina en H. pluvialis, podría ser útil para aumentar la productividad de astaxantina.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos. 

Carta de originalidad y cesión de derechos de publicación

Se debe presentar para proceso editorial con fines de publicación del artículo una carta de originalidad y cesión de derechos de publicación (Descargar Aquí)

 

Referencias

1. Grünewald K, Manfred E, Hirschberg J, Hage C. Phytoene desaturase is localized exclusively in the Chloroplast and up-regulated and the mRNA level during accumulation of secondary carotenoids in Haematococcus pluviali (Volvocales,Chlorophyciae). Plant Physiology.2000;122:1261-1268.

2. Lohr M, Chung-Soon, Grossman A. Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii. Plant Physiology.2005; 138: 490-515.

3. Torzillo G, Tolga G, Oya I, Gökpinar T. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol. 2005; 40: 233-240.

4. Bosung K, Jae-Cheol J, Benjamin N, Schmidt-Dannert C, Dordick J. Preparation, Characterization, and Optimization of an In vitro C30 Carotenoid Pathway. Applied and environmental microbiology. 2005;71: 6578-6583.

5. Umeno K, Arnold F. A C35 Carotenoid Biosynthetic Pathway. Applied and Environmental Microbiology. 2003; 69: 3573-3579.

6. Römer S, Fraser P. Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta. 2005; 221: 305-308.

7. Yasuhiro N, Kyoko A, Hiroaki K, Yoshikazu S, Kazutoshi S, Akiyoshi S, Sadao K, Wataru M, Norihiko M. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2-Hydroxylase, from Brevundimonas sp.Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls. Applied and Environmental Microbiology. 2005;71:4286-4296.

8. Rick W. Ye, Kristen J. Stead, Henry Yao, and Hongxian He. Mutational and Functional Analysis of the B-Carotene Ketolase Involved in the Production of Canthaxanthin and Astaxanthin. Applied and Environmental Microbiology, 2006; 72: Â 5829-5837.

9. Eonseon J, Lee Ch, Polle J. Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology. J. Microbiol. Biotechnol. 2006; 16: 821-83.

10. Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier U, Grossman A, Bhattacharya D, Lohr M. Ancient Recruitment by Chromists of Green Algal Genes Encoding Enzymes for Carotenoid Biosynthesis. Mol. Biol. Evol. 2008; 25: 2653-2667.

11. Steinbrenner J, Sandmann G.. Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis. Applied and Environmental Microbiology. 2006; 72: 7477-7484.

12. Yoshimura S, Ranbjar R, Inoue R, Katsuda T, Katoh S. Effective utilization of transmitted light for Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006; 102: 97-101.

13. Damiani M, Leonardi P, Pieroni O, Caceres E. 2006.Ultrastucture of the cyst wall of Haemotococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia .2006; 45: 616-623.

14. Steinbremer J, Linden H, Regulation of two carotenoid byosinthesis genes coding for phytoene synthase and carotenoid hidroxylase during stress-induced astaxanthin formation in the green alga. Haematococcus pluvialis. Plant Physiology. 2001;125: 810 - 817.

15. Labapour A, Shimahara K. Hada K, Kioui Y, Katsuda T, Katoh S. Fed-batch culture under illumination with blue light emitting diodes (LEDS) for Astaxanthin production by Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2005; 100: 339-342.

16. Sun Z, Cunninghan F, Ganti E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Plant biology. 1998; 95:11482-11488.

17. Ranbjar R, Inoue R, Katsuda T, Yamaji H. Katoh S. High efficiency production of Astaxanthin in an airlift hotobioreactor. Journal of Bioscience and Bioengineering. 2008;106:204-207.

18. Ranga R, Sarada A, Baskaran V, Ravishankar G. Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties. J. Microbiol. Biotechnol. 2009;19:1333-1341.

19. Martín J, Gudiña E, Barredo J. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional  hydroxylase-ketolase protein? Microbial Cell Factories. 2008; 7(3).

20. Amos R. Handboook of Microalga. Culture Biotechnology and applied Phycology. Blackwell publishing. India. 2005.

21. Meng Ch, Teng Ch, Jiang P, Qin P, Tseng Ch. Cloning and Characterization of β-Carotene Ketolase Gene Promoter in Haematococcus pluvialis. Acta Biochimica et Biophysica Sinica. 2005; 37: 270-275.

22. Hu H, Wei Y. 2006. The freshwater algae of China. Systematics, taxonomy and ecology. [4 pls of 16 figs], [i-iv], i-xv, 1-1023 pp. China: www.sciencep.com

23. Wang B. Zarca A. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyciae) as an active photoprotective process under high irradiance. Journal of Physiology. 2003; 39:1116-1124.

24. Wang Sh, Milton F, Hu S. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta. 2004; 220; 17-29.

25. Pentecost A. Order Volvocales. In: The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae. John, D.M., Whitton, B.A. & Brook, A.J. Eds. Cambridge: Cambridge University Press. 2002.

26. Melten D, Imamoglu E, Demirel Z. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis.. J Microbiol. Biotechnol. 2007; 17: 393-397.

27. Chojnacka K, Márquez R F. Kinetic and Stochiometric Relationships of the energy and carbon metabolism in the culture of Microalgae . Biotechnology.2004; 3: 21-34.

28. Lababpour A, Gyun Lee C. Simultaneous Measurements of Chlorophyll and Astaxanthin in Haematococcus pluvialis cells by first order derivative ultraviolet-visible Spectrophotometry. Journal of Bioscience and Bioengineering. 2006; 101:104-110.

29. Vidhyavathi R, Venkatachalam L, et al. Regulation of carotenoid byosinthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of Experimental Botany.2008; 59: 1409-1418.

30. Boussiba S, Bing W, Yuan J, Zarka A, Chen F. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnology Letters. 1999;21:601-604 .

31. Hata N, Ogbonna J, Hasegawa Y, Taroda H, Tanaka H. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture Journal of Applied Phycology. 2001;13: 395-402.

32. Orosa M, Franqueira D, Cid A, Abalde J. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters. 2001; 23: 373-378.

33. Zhekisheva M, Boussiba S, Khozin-Golberg I, Zarka A, Cohen Z. Accumulation of oleic acid in Haeamtococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycology. 2002; 38: 325-331.

34. Cifuentes A, González M, Vargas S, Hoeneisen M, González N. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions Biol Res. 2003; 36: 343-357.

35. Brinda B, Sarada R, Kamath B, Ravishankar G. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis cultural and regulatory aspects. Current Science. 2004; 87(10).

36. Jeon Y, Cho Ch, Yun Y. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis Enzyme and Microbial Technology. 2006; 39:490-495.

37. Suh I, Joo H, Gyun Lee H. A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation. Journal of Biotechnology. 2006;125:540-546.

38. Domínguez-Bocanegra R, Ponce-Noyola T, Torres-Muñoz J. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study Appl Microbiol Biotechnol. 2007; 75: 783-791.

39. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor Bioresource Technology. 2007; 98: 288-295.

40. Kang C,. Lee J, Park T,. Sim S. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol. 2007; 74: 987-994.

41. Ukibe K, Hashida K, Yoshida K, Takagi H. Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin production and oxidative stress tolerance. Applied and Environmental Microbiology. 2009; 75: 7205-7211.

42. Wang J, Sommerfeld M, Hu Q. Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta. 2009; 230: 191-203.

43. Li F, Vallabhaneni R, Wurtzel T. PSY3, a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-Induced Root Carotenogenesis. Plant Physiology. 2008; 146:1333-1345.

44. Welsch R, Wüst F, Bär C, Salim Ai, Beyer P. A Third Phytoene Synthase Is Devoted to Abiotic Stress-Induced Abscisic Acid Formation in Rice and Defines Functional Diversification of Phytoene Synthase Genes. Plant Physiology. 2008; 147: 367-380.

45. Fraser P, Shimada H, Misawa N. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay Eur. J. Biochem. 1998; 252: 229- 236.

46. Hagen C, Gru K, Schmidt S, Muller J. Accumulation of secondary carotenoids in agellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur. J. Phycol.2000;35: 75- 82.

47. Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranbjar R, Katoh S. Effect of flashing light from blue light emitting diodes on cell growth and Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006; 102: 442-446.

48. Tran N, Park J, Kim Z, Lee Ch. Influence of Sodium Orthovanadate on the Production of Astaxanthin from Green Algae Haematococcus lacustris Biotechnology and Bioprocess Engineering. 2009; 14: 322-329.

49. Sarada R, Vidhyavathi R, Usha D, Ravishankar G. An Efficient Method for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis J. Agric. Food Chem. 2006; 54: 7585−7588.

50. Vidhyavathi R, Sarada R, Ravishankar G A. Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme and Microbial Technology. 2009; Â 45 :88-93.

51. Pizarro L, Stange C. Light-dependent regulation of carotenoid biosynthesis in plants. Cien. Inv. Agr.2009; 36: 143-162

Descargas

La descarga de datos todavía no está disponible.