Skip to main navigation menu Skip to main content Skip to site footer

Astaxanthin Production in Haematococcus pluvialis under different stress conditions

Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés




Section
Artículo Original

How to Cite
Camacho Kurmen, J. E., González, G., & Klotz, B. (2013). Astaxanthin Production in Haematococcus pluvialis under different stress conditions. NOVA, 11(19). https://doi.org/10.22490/24629448.1022

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Judith Elena Camacho Kurmen
    Gloria González
      Bernadette Klotz

        Microalgae are a source of a large number of bioactive compounds of industrial importance, such as carotenoids used as natural colorants in food and feed, as well as in pharmaceuticals, cosmetics and aquaculture. They also have been studied as effective compounds for the prevention of different diseases due to their antioxidant, immunoregulatory, anti-inflammatory and anticarcinogenic properties.   In biotechnology applications astaxanthin is the most important ketocarotenoide. Currently most astaxanthin is produced by chemical synthesis and sold at U.S. $ 2500/kg. The high price and increasing demand of this compound in different industries, especially of natural origin creates an interest in the astaxanthin production from microalgae as Haematococcus pluvialis that accumulate significant amounts (more than 4%/g dry weight) and better quality what is obtained from sources such as yeast and plants.   The pigment accumulation in H. pluvialis occurs during the transformation of microalgae from the vegetative state (green phase) to aplanospora (red phase) when growth ends in the stationary phase. The types of stress that induce astaxanthin accumulation are temperature, light intensity, cycles of light / dark, nutrient concentration, pH, reactive oxygen species, salts and presence of metabolic processes inhibitors at different levels.   Is important to take in account that this microalgae is hard to grow and obtain the pigment in amounts of interest could be complicated due to complex cell cycle. Similarly, a better understanding of the molecular basis of the relationship, stress-inducing conditions, astaxanthin accumulation in H. pluvialis, might be helpful for increasing productivity of astaxanthin.

        Article visits 337 | PDF visits 147


        Downloads

        Download data is not yet available.
        1. Grünewald K, Manfred E, Hirschberg J, Hage C. Phytoene desaturase is localized exclusively in the Chloroplast and up-regulated and the mRNA level during accumulation of secondary carotenoids in Haematococcus pluviali (Volvocales,Chlorophyciae). Plant Physiology.2000;122:1261-1268.
        2. Lohr M, Chung-Soon, Grossman A. Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii. Plant Physiology.2005; 138: 490-515.
        3. Torzillo G, Tolga G, Oya I, Gökpinar T. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol. 2005; 40: 233-240.
        4. Bosung K, Jae-Cheol J, Benjamin N, Schmidt-Dannert C, Dordick J. Preparation, Characterization, and Optimization of an In vitro C30 Carotenoid Pathway. Applied and environmental microbiology. 2005;71: 6578-6583.
        5. Umeno K, Arnold F. A C35 Carotenoid Biosynthetic Pathway. Applied and Environmental Microbiology. 2003; 69: 3573-3579.
        6. Römer S, Fraser P. Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta. 2005; 221: 305-308.
        7. Yasuhiro N, Kyoko A, Hiroaki K, Yoshikazu S, Kazutoshi S, Akiyoshi S, Sadao K, Wataru M, Norihiko M. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2-Hydroxylase, from Brevundimonas sp.Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls. Applied and Environmental Microbiology. 2005;71:4286-4296.
        8. Rick W. Ye, Kristen J. Stead, Henry Yao, and Hongxian He. Mutational and Functional Analysis of the B-Carotene Ketolase Involved in the Production of Canthaxanthin and Astaxanthin. Applied and Environmental Microbiology, 2006; 72: Â 5829-5837.
        9. Eonseon J, Lee Ch, Polle J. Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology. J. Microbiol. Biotechnol. 2006; 16: 821-83.
        10. Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier U, Grossman A, Bhattacharya D, Lohr M. Ancient Recruitment by Chromists of Green Algal Genes Encoding Enzymes for Carotenoid Biosynthesis. Mol. Biol. Evol. 2008; 25: 2653-2667.
        11. Steinbrenner J, Sandmann G.. Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis. Applied and Environmental Microbiology. 2006; 72: 7477-7484.
        12. Yoshimura S, Ranbjar R, Inoue R, Katsuda T, Katoh S. Effective utilization of transmitted light for Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006; 102: 97-101.
        13. Damiani M, Leonardi P, Pieroni O, Caceres E. 2006.Ultrastucture of the cyst wall of Haemotococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia .2006; 45: 616-623.
        14. Steinbremer J, Linden H, Regulation of two carotenoid byosinthesis genes coding for phytoene synthase and carotenoid hidroxylase during stress-induced astaxanthin formation in the green alga. Haematococcus pluvialis. Plant Physiology. 2001;125: 810 - 817.
        15. Labapour A, Shimahara K. Hada K, Kioui Y, Katsuda T, Katoh S. Fed-batch culture under illumination with blue light emitting diodes (LEDS) for Astaxanthin production by Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2005; 100: 339-342.
        16. Sun Z, Cunninghan F, Ganti E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Plant biology. 1998; 95:11482-11488.
        17. Ranbjar R, Inoue R, Katsuda T, Yamaji H. Katoh S. High efficiency production of Astaxanthin in an airlift hotobioreactor. Journal of Bioscience and Bioengineering. 2008;106:204-207.
        18. Ranga R, Sarada A, Baskaran V, Ravishankar G. Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties. J. Microbiol. Biotechnol. 2009;19:1333-1341.
        19. Martín J, Gudiña E, Barredo J. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional  hydroxylase-ketolase protein? Microbial Cell Factories. 2008; 7(3).
        20. Amos R. Handboook of Microalga. Culture Biotechnology and applied Phycology. Blackwell publishing. India. 2005.
        21. Meng Ch, Teng Ch, Jiang P, Qin P, Tseng Ch. Cloning and Characterization of β-Carotene Ketolase Gene Promoter in Haematococcus pluvialis. Acta Biochimica et Biophysica Sinica. 2005; 37: 270-275.
        22. Hu H, Wei Y. 2006. The freshwater algae of China. Systematics, taxonomy and ecology. [4 pls of 16 figs], [i-iv], i-xv, 1-1023 pp. China: www.sciencep.com
        23. Wang B. Zarca A. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyciae) as an active photoprotective process under high irradiance. Journal of Physiology. 2003; 39:1116-1124.
        24. Wang Sh, Milton F, Hu S. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta. 2004; 220; 17-29.
        25. Pentecost A. Order Volvocales. In: The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae. John, D.M., Whitton, B.A. & Brook, A.J. Eds. Cambridge: Cambridge University Press. 2002.
        26. Melten D, Imamoglu E, Demirel Z. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis.. J Microbiol. Biotechnol. 2007; 17: 393-397.
        27. Chojnacka K, Márquez R F. Kinetic and Stochiometric Relationships of the energy and carbon metabolism in the culture of Microalgae . Biotechnology.2004; 3: 21-34.
        28. Lababpour A, Gyun Lee C. Simultaneous Measurements of Chlorophyll and Astaxanthin in Haematococcus pluvialis cells by first order derivative ultraviolet-visible Spectrophotometry. Journal of Bioscience and Bioengineering. 2006; 101:104-110.
        29. Vidhyavathi R, Venkatachalam L, et al. Regulation of carotenoid byosinthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of Experimental Botany.2008; 59: 1409-1418.
        30. Boussiba S, Bing W, Yuan J, Zarka A, Chen F. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnology Letters. 1999;21:601-604 .
        31. Hata N, Ogbonna J, Hasegawa Y, Taroda H, Tanaka H. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture Journal of Applied Phycology. 2001;13: 395-402.
        32. Orosa M, Franqueira D, Cid A, Abalde J. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters. 2001; 23: 373-378.
        33. Zhekisheva M, Boussiba S, Khozin-Golberg I, Zarka A, Cohen Z. Accumulation of oleic acid in Haeamtococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycology. 2002; 38: 325-331.
        34. Cifuentes A, González M, Vargas S, Hoeneisen M, González N. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions Biol Res. 2003; 36: 343-357.
        35. Brinda B, Sarada R, Kamath B, Ravishankar G. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis cultural and regulatory aspects. Current Science. 2004; 87(10).
        36. Jeon Y, Cho Ch, Yun Y. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis Enzyme and Microbial Technology. 2006; 39:490-495.
        37. Suh I, Joo H, Gyun Lee H. A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation. Journal of Biotechnology. 2006;125:540-546.
        38. Domínguez-Bocanegra R, Ponce-Noyola T, Torres-Muñoz J. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study Appl Microbiol Biotechnol. 2007; 75: 783-791.
        39. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor Bioresource Technology. 2007; 98: 288-295.
        40. Kang C,. Lee J, Park T,. Sim S. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol. 2007; 74: 987-994.
        41. Ukibe K, Hashida K, Yoshida K, Takagi H. Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin production and oxidative stress tolerance. Applied and Environmental Microbiology. 2009; 75: 7205-7211.
        42. Wang J, Sommerfeld M, Hu Q. Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta. 2009; 230: 191-203.
        43. Li F, Vallabhaneni R, Wurtzel T. PSY3, a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-Induced Root Carotenogenesis. Plant Physiology. 2008; 146:1333-1345.
        44. Welsch R, Wüst F, Bär C, Salim Ai, Beyer P. A Third Phytoene Synthase Is Devoted to Abiotic Stress-Induced Abscisic Acid Formation in Rice and Defines Functional Diversification of Phytoene Synthase Genes. Plant Physiology. 2008; 147: 367-380.
        45. Fraser P, Shimada H, Misawa N. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay Eur. J. Biochem. 1998; 252: 229- 236.
        46. Hagen C, Gru K, Schmidt S, Muller J. Accumulation of secondary carotenoids in agellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur. J. Phycol.2000;35: 75- 82.
        47. Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranbjar R, Katoh S. Effect of flashing light from blue light emitting diodes on cell growth and Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006; 102: 442-446.
        48. Tran N, Park J, Kim Z, Lee Ch. Influence of Sodium Orthovanadate on the Production of Astaxanthin from Green Algae Haematococcus lacustris Biotechnology and Bioprocess Engineering. 2009; 14: 322-329.
        49. Sarada R, Vidhyavathi R, Usha D, Ravishankar G. An Efficient Method for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis J. Agric. Food Chem. 2006; 54: 7585−7588.
        50. Vidhyavathi R, Sarada R, Ravishankar G A. Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme and Microbial Technology. 2009; Â 45 :88-93.
        51. Pizarro L, Stange C. Light-dependent regulation of carotenoid biosynthesis in plants. Cien. Inv. Agr.2009; 36: 143-162
        Sistema OJS 3.4.0.5 - Metabiblioteca |