Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda

Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Cruz Baquero, C. A., Bernal Estévez, D. A., & Hernández, E. C. (2022). Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda. REVISTA NOVA , 20(39), 163-180. https://doi.org/10.22490/24629448.6593

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Claudia Andrea Cruz Baquero

    David Andrés Bernal Estévez

      Estefania Cuta Hernández

        La citometría de flujo (CMF) es una técnica que permite el análisis multiparamétrico de poblaciones celulares, siendo esencial en la investigación biomédica y como herramienta diagnóstica. Esta técnica se caracteriza por tener una alta sensibilidad y rapidez, evaluando en la población de interés características como tamaño, granularidad, complejidad del citoplasma celular y expresión de proteínas que permiten la diferenciación fenotípica y funcional de las células.

         Actualmente se han logrado avances notables empleando la CMF, lo que ha permitido diferenciar poblaciones celulares de forma más específica y subclasificarlas mediante la conjugación de diversos anticuerpos monoclonales antígeno-específicos, capaces de reconocer múltiples proteínas de membrana. Por estas razones, esta técnica ha adquirido importancia en el diagnóstico y seguimiento de enfermedades y anomalías hematológicas, como leucemias, síndromes mielodisplásicos y síndromes mieloproliferativos, entre otras.

         En este contexto, la presente revisión se enfoca en los avances en la implementación de la CMF en la Enfermedad Mínima Residual (EMR) presente en la Leucemia Linfoblástica Aguda (LLA), la cual es una población mínima leucémica que se detecta en un paciente después de suministrar un tratamiento oncológico, donde se evalúa su eficacia, el riesgo de una recaída y el proceso de remisión completa.

         

         


        Visitas del artículo 332 | Visitas PDF 949


        Descargas

        Los datos de descarga todavía no están disponibles.
        1. Instituto Nacional de Salud. Comportamiento epidemiológico de cáncer en menores de 18 años, periodo 2015 a 2020, Colombia. Boletín Epidemiológico Semanal [Internet]. 2021 [citado 5 oct 2020]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_5.pdf
        2. https://doi.org/10.33610/23576189.2021.18
        3. Villalba CP, Martínez PA, Acero H. Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014. Pediatría (Santiago) [Internet]. 2016 [citado 14 oct 2020];49(1):17-22. Disponible en: https://www.sciencedirect.com/science/article/pii/S0120491216000148
        4. https://doi.org/10.1016/j.rcpe.2016.01.002
        5. Gacha Garay MJ, Akle V, Enciso L, Garavito Aguilar ZV. La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia. Rev Colomb Cancerol [Internet]. 2017 [citado 20 oct 2020];21(4):212-224. Disponible en: https://www.revistacancercol.org/index.php/cancer/article/view/182
        6. https://doi.org/10.1016/j.rccan.2016.10.001
        7. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood [Internet]. 2016 [citado 26 oct 2020];127(20):2391-405. Disponible en: https://ashpublications.org/blood/article/127/20/2391/35255/The-2016-revision-to-the-World-Health-Organization
        8. https://doi.org/10.1182/blood-2016-03-643544
        9. Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods [Internet]. 2017 [citado 10 nov 2020]; 112:39-45. Disponible en: http://dx.doi.org/10.1016/j.ymeth.2016.06.023
        10. https://doi.org/10.1016/j.ymeth.2016.06.023
        11. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol [Internet]. 2017 [citado 17 nov 2020];3(7):1-9. Disponible en: https://jamanetwork.com/journals/jamaoncology/fullarticle/2626509
        12. https://doi.org/10.1001/jamaoncol.2017.0580
        13. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2016 [citado 25 nov 2020];101(4):407-16. Disponible en: http://www.haematologica.org/lookup/doi/10.3324/haematol.2015.141101
        14. https://doi.org/10.3324/haematol.2015.141101
        15. Sabath DE. Minimal Residual Disease. Leukemia & Lymphoma Society [Internet]. 2018 [citado 25 nov 2020];1(35). Disponible en: https://www.lls.org/sites/default/files/National/USA/Pdf/Publications/FS35_MRD_Final_2019.pdf
        16. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J [Internet]. 2017 [citado 30 nov 2020];7(6):e577. Disponible en: https://www.nature.com/articles/bcj201753
        17. https://doi.org/10.1038/bcj.2017.53
        18. Tan SH, Bertulfo FC, Sanda T. Leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2017 [citado 9 dic 2020];7. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2017.00218/full
        19. https://doi.org/10.3389/fonc.2017.00218
        20. Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol [Internet]. 2020 [citado 13 dic 2020];10:1-11. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00273/full
        21. https://doi.org/10.3389/fonc.2020.00273
        22. Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, et al. Unique clinico-biological, genetic and prognostic features of adult early T-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2020 [citado 13 dic 2020];105(6):e294-7. Disponible en: https://haematologica.org/article/view/9459
        23. https://doi.org/10.3324/haematol.2019.225078
        24. Heikamp EB, Pui C-H. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr [Internet]. 2018 [citado 19 dic 2020];203:14-24.e2. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022347618309442
        25. https://doi.org/10.1016/j.jpeds.2018.07.039
        26. Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, et al. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol [Internet]. 2020 [citado 22 dic 2020];21(1):1-24. Disponible en: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02192-z
        27. https://doi.org/10.1186/s13059-020-02192-z
        28. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol [Internet]. 2017 [citado 27 dic 2020];35(9):975-83. Disponible en: https://ascopubs.org/doi/10.1200/JCO.2016.70.7836
        29. https://doi.org/10.1200/JCO.2016.70.7836
        30. Van Dongen JJM, Van Der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood [Internet]. 2015 [citado 5 ene 2021]; 125(26):3996-4009. Disponible en: https://ashpublications.org/blood/article/125/26/3996/34323/Minimal-residual-disease-diagnostics-in-acute
        31. https://doi.org/10.1182/blood-2015-03-580027
        32. Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 5 ene 2021];7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
        33. https://doi.org/10.3389/fimmu.2016.00403
        34. Del Príncipe MI, De Bellis E, Gurnari C, Buzzati E, Savi A, Consalvo MAI, et al. Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn [Internet]. 2019 [citado 12 ene 2021];19(12):1089-97. Disponible en: https://doi.org/10.1080/14737159.2019.1691918
        35. https://doi.org/10.1080/14737159.2019.1691918
        36. Azad A, Rajwa B, Pothen A. Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front Oncol [Internet]. 2016 [citado 17 ene 2021];6(AUG):1-20. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2016.00188/full
        37. https://doi.org/10.3389/fonc.2016.00188
        38. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol [Internet]. 2017 [citado 26 ene 2021];37(2):163-76. Disponible en: https://www.tandfonline.com/doi/full/10.3109/07388551.2015.1128876
        39. https://doi.org/10.3109/07388551.2015.1128876
        40. Tembhare P, Badrinath Y, Ghogale S, Patkar N, Dhole N, Dalavi P, et al. A novel and easy FxCycleTM violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytom Part A [Internet]. 2016 [citado 26 ene 2021];89(3):281-91. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22803
        41. https://doi.org/10.1002/cyto.a.22803
        42. Kalina T, Lundsten K, Engel P. Relevance of Antibody Validation for Flow Cytometry. Cytom Part A [Internet]. 2020 [citado 8 feb 2021];97(2):126-36. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.23895
        43. https://doi.org/10.1002/cyto.a.23895
        44. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer [Internet]. 2016 [citado 12 feb 2021];16(8):494-507. Disponible en: http://dx.doi.org/10.1038/nrc.2016.63
        45. https://doi.org/10.1038/nrc.2016.63
        46. DiGiuseppe JA, Wood BL. Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytom Part B - Clin Cytom [Internet]. 2019 [citado 19 feb 2021];96(4):256-65. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21833
        47. https://doi.org/10.1002/cyto.b.21833
        48. Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et al. Patients over 40 years old with precursor T-cell lymphoblastic lymphoma have different prognostic factors comparing to the youngers. Sci Rep [Internet]. 2018 [citado 25 feb 2021];8(1):1-7. Disponible en: https://www.nature.com/articles/s41598-018-19565-x
        49. https://doi.org/10.1038/s41598-018-19565-x
        50. Sun J, Wang L, Liu Q, Tárnok A, Su X. Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification. Biomed Opt Express [Internet]. 2020 [citado 5 mar 2021];11(11):6674. Disponible en: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-11-11-6674&id=441886
        51. https://doi.org/10.1364/BOE.405557
        52. Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol [Internet]. 2015 [citado 14 mar 2021];144(3):393-410. Disponible en: https://academic.oup.com/ajcp/article/144/3/393/1760791
        53. https://doi.org/10.1309/AJCPAN7BH5DNYWZB
        54. Noronha EP, Codeço Marques LV, Andrade FG, Santos Thuler LC, Terra-Granado E, Pombo-De-Oliveira MS. The profile of immunophenotype and genotype aberrations in subsets of pediatric T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2019 [citado 22 mar 2021];9:1-10. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2019.00316/full
        55. https://doi.org/10.3389/fonc.2019.00316
        56. Rocha JMC, Xavier SG, Souza ME de L, Murao M, de Oliveira BM. Comparison between flow cytometry and standard PCR in the evaluation of MRD in children with acute lymphoblastic leukemia treated with the GBTLI LLA-2009 protocol. Pediatr Hematol Oncol [Internet]. 2019 [citado 30 mar 2021];36(5):287-301. Disponible en: https://doi.org/10.1080/08880018.2019.1636168
        57. https://doi.org/10.1080/08880018.2019.1636168
        58. Rytting ME, Jabbour EJ, O'Brien SM, Kantarjian HM. Acute lymphoblastic leukemia in adolescents and young adults. Cancer [Internet]. 2017 [citado 4 abr 2021];123(13):2398-403. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.30624
        59. https://doi.org/10.1002/cncr.30624
        60. Ministerio de salud y Protección Social. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblásticas y mieloide en población mayor de 18 años. Circulación [Internet]. 2017 [citado 4 abr 2021]; 126: 37. Disponible en: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_563/GPC_Leucemia_Mayores_18años/LEUCEMIAS - profesionalesDIC29_WEB.pdf
        61. Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 10 abr 2021]; 7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
        62. https://doi.org/10.3389/fimmu.2016.00403
        63. Keegan A, Charest K, Schmidt R, Briggs D, Deangelo DJ, Li B, et al. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease. J Clin Pathol [Internet]. 2018 [citado 18 abr 2021];1-6. Disponible en: https://jcp.bmj.com/content/71/7/653
        64. https://doi.org/10.1136/jclinpath-2017-204828
        65. Fossat C, Roussel M, Arnoux I, Asnafi V, Brouzes C, Garnache-Ottou F, et al. Methodological aspects of minimal residual disease assessment by flow cytometry in acute lymphoblastic leukemia: A french multicenter study. Cytom Part B - Clin Cytom [Internet]. 2015 [citado 24 abr 2021];88(1):21-9. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21195
        66. https://doi.org/10.1002/cyto.b.21195
        67. Thulasi Raman R, Anurekha M, Lakshman V, Balasubramaniam R, Ramya U, Revathi R. Immunophenotypic modulation in pediatric B lymphoblastic leukemia and its implications in MRD detection. Leuk Lymphoma [Internet]. 2020 [citado 24 abr 2021];61(8):1974-80. Disponible en: https://doi.org/10.1080/10428194.2020.1742902
        68. https://doi.org/10.1080/10428194.2020.1742902
        69. Ravandi F, Jorgensen JL, O'Brien SM, Jabbour E, Thomas DA, Borthakur G, et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol [Internet]. 2016 [citado 30 abr 2021];172(3):392-400. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjh.13834
        70. https://doi.org/10.1111/bjh.13834
        71. Li HF, Meng WT, Jia YQ, Jiang NG, Zeng TT, Jin YM, et al. Development-Associated immunophenotypes reveal the heterogeneous and individualized early responses of adult B-Acute lymphoblastic leukemia. Med (United States) [Internet]. 2016 [citado 6 may 2021];95(34). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400307/
        72. https://doi.org/10.1097/MD.0000000000004128
        73. Li SQ, Fan QZ, Xu LP, Wang Y, Zhang XH, Chen H, et al. Different Effects of Pre-transplantation Measurable Residual Disease on Outcomes According to Transplant Modality in Patients With Philadelphia Chromosome Positive ALL. Front Oncol [Internet]. 2020 [citado 15 may 2021];10(March):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00320/ful
        74. https://doi.org/10.3389/fonc.2020.00320
        75. Keeney M, Hedley BD, Chin-Yee IH. Flow cytometry-Recognizing unusual populations in leukemia and lymphoma diagnosis. Int J Lab Hematol [Internet]. 2017 [citado 21 may 2021];39:86-92. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/ijlh.12666
        76. https://doi.org/10.1111/ijlh.12666
        77. Marsán Suárez V, Macías Abraham C, Díaz Domínguez G, Morales Garrido Y, Lam Díaz RM, Machín García S, González Otero A, et al. Expresión del antígeno CD45 en la Leucemia Linfoide aguda Pediátrica. Rev Cubana Hematol Inmunol Hemoter [Internet]. 2017 [citado 21 may 2021]; 33(2):[aprox. 0 p.]. Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/513
        78. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytom Part B - Clin Cytom [Internet]. 2016 [citado 8 jun 2021];90(1):47-53. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21239
        79. https://doi.org/10.1002/cyto.b.21239
        80. Chatterjee T, Mallhi RS, Venkatesan S. Minimal residual disease detection using flow cytometry: Applications in acute Leukemia. Med J Armed Forces India [Internet]. 2016 [citado 8 jun 2021];72(2):152-6. Available from: http://dx.doi.org/10.1016/j.mjafi.2016.02.002
        81. https://doi.org/10.1016/j.mjafi.2016.02.002
        82. Chen X, Wood BL. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev [Internet]. 2017 [citado 23 jun 2021];31(2):63-75. Disponible en: http://dx.doi.org/10.1016/j.blre.2016.09.006
        83. https://doi.org/10.1016/j.blre.2016.09.006
        84. Wenzinger C, Williams E, Gru AA. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep [Internet]. 2018 [citado 30 jun 2021];13(4):275-88. Disponible en: https://link.springer.com/article/10.1007/s11899-018-0456-8
        85. https://doi.org/10.1007/s11899-018-0456-8
        86. Xia M, Zhang H, Lu Z, Gao Y, Liao X, Li H. Key markers of minimal residual disease in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol [Internet]. 2016 [citado 6 jul 2021];38(6):418-22. Disponible en: https://journals.lww.com/jpho-online/Abstract/2016/08000/Key_Markers_of_Minimal_Residual_Disease_in.2.aspx
        87. https://doi.org/10.1097/MPH.0000000000000624
        88. Popov A, Henze G, Verzhbitskaya T, Roumiantseva J, Lagoyko S, Khlebnikova O, et al. Absolute count of leukemic blasts in cerebrospinal fluid as detected by flow cytometry is a relevant prognostic factor in children with acute lymphoblastic leukemia. J Cancer Res Clin Oncol [Internet]. 2019 [citado 6 jul 2021];145(5):1331-9. Disponible en: http://dx.doi.org/10.1007/s00432-019-02886-3
        89. https://doi.org/10.1007/s00432-019-02886-3
        90. McShane LM, Smith MA. Prospects for Minimal Residual Disease as a Surrogate Endpoint in Pediatric Acute Lymphoblastic Leukemia Clinical Trials. JNCI Cancer Spectrum [Internet]. 2018 [citado 17 jul 2021]; 2(4):pky070. Disponible en: https://doi.org/10.1093/jncics/pky070
        91. https://doi.org/10.1093/jncics/pky070
        92. Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, Buldini B, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica [Internet]. 2015 [citado 26 jul 2021];100(7):935-44. Disponible en: https://haematologica.org/article/view/7439
        93. https://doi.org/10.3324/haematol.2014.116707
        94. Bruggemann M, Kotrova M. Minimal residual disease in adult ALL: Technical aspects and implications for correct clinical interpretation. Blood Adv [Internet]. 2017 [citado 31 jul 2021];1(25):2456-66. Disponible en: https://ashpublications.org/hematology/article/2017/1/13/21072/Minimal-residual-disease-in-adult-ALL-technical
        95. https://doi.org/10.1182/bloodadvances.2017009845
        96. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol [Internet]. 2011 [citado 22 ago 2021];29(9):1190-7. Disponible en: https://www.hindawi.com/journals/lrt/2014/421723/
        97. https://doi.org/10.1200/JCO.2010.31.8121
        98. Gökbuget N. How should we treat a patient with relapsed Ph-negative B-ALL and what novel approaches are being investigated? Best Pract Res Clin Haematol [Internet]. 2017 [citado 22 ago 2021];30(3):261-74. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1521692617300270?via%3Dihub
        99. https://doi.org/10.1016/j.beha.2017.07.010
        100. Tembhare PR, Narula G, Khanka T, Ghogale S, Chatterjee G, Patkar N V., et al. Post-induction Measurable Residual Disease Using Multicolor Flow Cytometry Is Strongly Predictive of Inferior Clinical Outcome in the Real-Life Management of Childhood T-Cell Acute Lymphoblastic Leukemia: A Study of 256 Patients. Front Oncol [Internet]. 2020 [citado 22 ago 2021];10(April):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00577/full
        101. https://doi.org/10.3389/fonc.2020.00577
        102. Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematol (United States) [Internet]. 2014 [citado 29 ago 2021];2014(1):244-9. Available from: https://ashpublications.org/hematology/article/2014/1/244/20518/Detection-and-management-of-minimal-residual
        103. https://doi.org/10.1182/asheducation-2014.1.244
        104. Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, et al. Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci [Internet]. 2020 [citado 29 ago 2021];21(3). Disponible en: https://www.mdpi.com/1422-0067/21/3/1054/htm
        105. https://doi.org/10.3390/ijms21031054
        106. Abou Dalle I, Jabbour E, Short NJ. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Ther Adv Hematol [Internet]. 2020 [citado 06 sep 2021];11:204062072091002. Disponible en: https://journals.sagepub.com/doi/10.1177/2040620720910023
        107. https://doi.org/10.1177/2040620720910023
        108. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2016 [citado 06 sep 2021];27:v69-82. Disponible en: http://dx.doi.org/10.1093/annonc/mdw025
        109. https://doi.org/10.1093/annonc/mdw025
        110. Pui C-H, Pei D, Raimondi SC, Coustan-Smith E, Jeha S, Cheng C, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia [Internet]. 2017 [citado 06 sep 2021];31(2):333-9. Available from: http://www.nature.com/articles/leu2016234
        111. https://doi.org/10.1038/leu.2016.234
        112. Campana D, Pui C. Evidence-Based Focused Review Minimal residual disease - guided therapy in childhood acute lymphoblastic leukemia Case presentations. Blood [Internet]. 2017 [citado 06 sep 2021];129(14):1913-9. Disponible en: https://ashpublications.org/blood/article/129/14/1913/35887/Minimal-residual-disease-guided-therapy-in
        113. https://doi.org/10.1182/blood-2016-12-725804
        114. Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer [Internet]. 2015 [citado 06 sep 2021];121(15):2517-28. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29383
        115. https://doi.org/10.1002/cncr.29383
        116. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology [Internet]. 2016 [citado 06 sep 2021];2016(1):580-8. Disponible en: https://ashpublications.org/hematology/article/2016/1/580/21136/T-cell-acute-lymphoblastic-leukemia
        117. https://doi.org/10.1182/asheducation-2016.1.580
        Sistema OJS 3.4.0.5 - Metabiblioteca |