Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda

Contenido principal del artículo

Autores

Claudia Andrea Cruz Baquero http://orcid.org/0000-0003-1041-9609
David Andrés Bernal Estévez https://orcid.org/0000-0002-7330-0333
Estefania Cuta Hernández

Resumen

La citometría de flujo (CMF) es una técnica que permite el análisis multiparamétrico de poblaciones celulares, siendo esencial en la investigación biomédica y como herramienta diagnóstica. Esta técnica se caracteriza por tener una alta sensibilidad y rapidez, evaluando en la población de interés características como tamaño, granularidad, complejidad del citoplasma celular y expresión de proteínas que permiten la diferenciación fenotípica y funcional de las células.


 Actualmente se han logrado avances notables empleando la CMF, lo que ha permitido diferenciar poblaciones celulares de forma más específica y subclasificarlas mediante la conjugación de diversos anticuerpos monoclonales antígeno-específicos, capaces de reconocer múltiples proteínas de membrana. Por estas razones, esta técnica ha adquirido importancia en el diagnóstico y seguimiento de enfermedades y anomalías hematológicas, como leucemias, síndromes mielodisplásicos y síndromes mieloproliferativos, entre otras.


 En este contexto, la presente revisión se enfoca en los avances en la implementación de la CMF en la Enfermedad Mínima Residual (EMR) presente en la Leucemia Linfoblástica Aguda (LLA), la cual es una población mínima leucémica que se detecta en un paciente después de suministrar un tratamiento oncológico, donde se evalúa su eficacia, el riesgo de una recaída y el proceso de remisión completa.


 


 

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1. Instituto Nacional de Salud. Comportamiento epidemiológico de cáncer en menores de 18 años, periodo 2015 a 2020, Colombia. Boletín Epidemiológico Semanal [Internet]. 2021 [citado 5 oct 2020]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_5.pdf
https://doi.org/10.33610/23576189.2021.18

2. Villalba CP, Martínez PA, Acero H. Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014. Pediatría (Santiago) [Internet]. 2016 [citado 14 oct 2020];49(1):17-22. Disponible en: https://www.sciencedirect.com/science/article/pii/S0120491216000148
https://doi.org/10.1016/j.rcpe.2016.01.002

3. Gacha Garay MJ, Akle V, Enciso L, Garavito Aguilar ZV. La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia. Rev Colomb Cancerol [Internet]. 2017 [citado 20 oct 2020];21(4):212-224. Disponible en: https://www.revistacancercol.org/index.php/cancer/article/view/182
https://doi.org/10.1016/j.rccan.2016.10.001

4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood [Internet]. 2016 [citado 26 oct 2020];127(20):2391-405. Disponible en: https://ashpublications.org/blood/article/127/20/2391/35255/The-2016-revision-to-the-World-Health-Organization
https://doi.org/10.1182/blood-2016-03-643544

5. Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods [Internet]. 2017 [citado 10 nov 2020]; 112:39-45. Disponible en: http://dx.doi.org/10.1016/j.ymeth.2016.06.023
https://doi.org/10.1016/j.ymeth.2016.06.023

6. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol [Internet]. 2017 [citado 17 nov 2020];3(7):1-9. Disponible en: https://jamanetwork.com/journals/jamaoncology/fullarticle/2626509
https://doi.org/10.1001/jamaoncol.2017.0580

7. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2016 [citado 25 nov 2020];101(4):407-16. Disponible en: http://www.haematologica.org/lookup/doi/10.3324/haematol.2015.141101
https://doi.org/10.3324/haematol.2015.141101

8. Sabath DE. Minimal Residual Disease. Leukemia & Lymphoma Society [Internet]. 2018 [citado 25 nov 2020];1(35). Disponible en: https://www.lls.org/sites/default/files/National/USA/Pdf/Publications/FS35_MRD_Final_2019.pdf

9. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J [Internet]. 2017 [citado 30 nov 2020];7(6):e577. Disponible en: https://www.nature.com/articles/bcj201753
https://doi.org/10.1038/bcj.2017.53

10. Tan SH, Bertulfo FC, Sanda T. Leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2017 [citado 9 dic 2020];7. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2017.00218/full
https://doi.org/10.3389/fonc.2017.00218

11. Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol [Internet]. 2020 [citado 13 dic 2020];10:1-11. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00273/full
https://doi.org/10.3389/fonc.2020.00273

12. Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, et al. Unique clinico-biological, genetic and prognostic features of adult early T-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2020 [citado 13 dic 2020];105(6):e294-7. Disponible en: https://haematologica.org/article/view/9459
https://doi.org/10.3324/haematol.2019.225078

13.Heikamp EB, Pui C-H. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr [Internet]. 2018 [citado 19 dic 2020];203:14-24.e2. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022347618309442
https://doi.org/10.1016/j.jpeds.2018.07.039

14. Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, et al. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol [Internet]. 2020 [citado 22 dic 2020];21(1):1-24. Disponible en: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02192-z
https://doi.org/10.1186/s13059-020-02192-z

15. Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol [Internet]. 2017 [citado 27 dic 2020];35(9):975-83. Disponible en: https://ascopubs.org/doi/10.1200/JCO.2016.70.7836
https://doi.org/10.1200/JCO.2016.70.7836

16. Van Dongen JJM, Van Der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood [Internet]. 2015 [citado 5 ene 2021]; 125(26):3996-4009. Disponible en: https://ashpublications.org/blood/article/125/26/3996/34323/Minimal-residual-disease-diagnostics-in-acute
https://doi.org/10.1182/blood-2015-03-580027

17. Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 5 ene 2021];7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
https://doi.org/10.3389/fimmu.2016.00403

18. Del Príncipe MI, De Bellis E, Gurnari C, Buzzati E, Savi A, Consalvo MAI, et al. Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn [Internet]. 2019 [citado 12 ene 2021];19(12):1089-97. Disponible en: https://doi.org/10.1080/14737159.2019.1691918
https://doi.org/10.1080/14737159.2019.1691918

19. Azad A, Rajwa B, Pothen A. Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front Oncol [Internet]. 2016 [citado 17 ene 2021];6(AUG):1-20. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2016.00188/full
https://doi.org/10.3389/fonc.2016.00188

20. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol [Internet]. 2017 [citado 26 ene 2021];37(2):163-76. Disponible en: https://www.tandfonline.com/doi/full/10.3109/07388551.2015.1128876
https://doi.org/10.3109/07388551.2015.1128876

21. Tembhare P, Badrinath Y, Ghogale S, Patkar N, Dhole N, Dalavi P, et al. A novel and easy FxCycleTM violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytom Part A [Internet]. 2016 [citado 26 ene 2021];89(3):281-91. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22803
https://doi.org/10.1002/cyto.a.22803

22. Kalina T, Lundsten K, Engel P. Relevance of Antibody Validation for Flow Cytometry. Cytom Part A [Internet]. 2020 [citado 8 feb 2021];97(2):126-36. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.23895
https://doi.org/10.1002/cyto.a.23895

23. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer [Internet]. 2016 [citado 12 feb 2021];16(8):494-507. Disponible en: http://dx.doi.org/10.1038/nrc.2016.63
https://doi.org/10.1038/nrc.2016.63

24. DiGiuseppe JA, Wood BL. Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytom Part B - Clin Cytom [Internet]. 2019 [citado 19 feb 2021];96(4):256-65. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21833
https://doi.org/10.1002/cyto.b.21833

25. Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et al. Patients over 40 years old with precursor T-cell lymphoblastic lymphoma have different prognostic factors comparing to the youngers. Sci Rep [Internet]. 2018 [citado 25 feb 2021];8(1):1-7. Disponible en: https://www.nature.com/articles/s41598-018-19565-x
https://doi.org/10.1038/s41598-018-19565-x

26. Sun J, Wang L, Liu Q, Tárnok A, Su X. Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification. Biomed Opt Express [Internet]. 2020 [citado 5 mar 2021];11(11):6674. Disponible en: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-11-11-6674&id=441886
https://doi.org/10.1364/BOE.405557

27. Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol [Internet]. 2015 [citado 14 mar 2021];144(3):393-410. Disponible en: https://academic.oup.com/ajcp/article/144/3/393/1760791
https://doi.org/10.1309/AJCPAN7BH5DNYWZB

28. Noronha EP, Codeço Marques LV, Andrade FG, Santos Thuler LC, Terra-Granado E, Pombo-De-Oliveira MS. The profile of immunophenotype and genotype aberrations in subsets of pediatric T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2019 [citado 22 mar 2021];9:1-10. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2019.00316/full
https://doi.org/10.3389/fonc.2019.00316

29. Rocha JMC, Xavier SG, Souza ME de L, Murao M, de Oliveira BM. Comparison between flow cytometry and standard PCR in the evaluation of MRD in children with acute lymphoblastic leukemia treated with the GBTLI LLA-2009 protocol. Pediatr Hematol Oncol [Internet]. 2019 [citado 30 mar 2021];36(5):287-301. Disponible en: https://doi.org/10.1080/08880018.2019.1636168
https://doi.org/10.1080/08880018.2019.1636168

30. Rytting ME, Jabbour EJ, O'Brien SM, Kantarjian HM. Acute lymphoblastic leukemia in adolescents and young adults. Cancer [Internet]. 2017 [citado 4 abr 2021];123(13):2398-403. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.30624
https://doi.org/10.1002/cncr.30624

31. Ministerio de salud y Protección Social. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblásticas y mieloide en población mayor de 18 años. Circulación [Internet]. 2017 [citado 4 abr 2021]; 126: 37. Disponible en: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_563/GPC_Leucemia_Mayores_18años/LEUCEMIAS - profesionalesDIC29_WEB.pdf

32. Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 10 abr 2021]; 7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
https://doi.org/10.3389/fimmu.2016.00403

33. Keegan A, Charest K, Schmidt R, Briggs D, Deangelo DJ, Li B, et al. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease. J Clin Pathol [Internet]. 2018 [citado 18 abr 2021];1-6. Disponible en: https://jcp.bmj.com/content/71/7/653
https://doi.org/10.1136/jclinpath-2017-204828

34. Fossat C, Roussel M, Arnoux I, Asnafi V, Brouzes C, Garnache-Ottou F, et al. Methodological aspects of minimal residual disease assessment by flow cytometry in acute lymphoblastic leukemia: A french multicenter study. Cytom Part B - Clin Cytom [Internet]. 2015 [citado 24 abr 2021];88(1):21-9. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21195
https://doi.org/10.1002/cyto.b.21195

35. Thulasi Raman R, Anurekha M, Lakshman V, Balasubramaniam R, Ramya U, Revathi R. Immunophenotypic modulation in pediatric B lymphoblastic leukemia and its implications in MRD detection. Leuk Lymphoma [Internet]. 2020 [citado 24 abr 2021];61(8):1974-80. Disponible en: https://doi.org/10.1080/10428194.2020.1742902
https://doi.org/10.1080/10428194.2020.1742902

36. Ravandi F, Jorgensen JL, O'Brien SM, Jabbour E, Thomas DA, Borthakur G, et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol [Internet]. 2016 [citado 30 abr 2021];172(3):392-400. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjh.13834
https://doi.org/10.1111/bjh.13834

37. Li HF, Meng WT, Jia YQ, Jiang NG, Zeng TT, Jin YM, et al. Development-Associated immunophenotypes reveal the heterogeneous and individualized early responses of adult B-Acute lymphoblastic leukemia. Med (United States) [Internet]. 2016 [citado 6 may 2021];95(34). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400307/
https://doi.org/10.1097/MD.0000000000004128

38. Li SQ, Fan QZ, Xu LP, Wang Y, Zhang XH, Chen H, et al. Different Effects of Pre-transplantation Measurable Residual Disease on Outcomes According to Transplant Modality in Patients With Philadelphia Chromosome Positive ALL. Front Oncol [Internet]. 2020 [citado 15 may 2021];10(March):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00320/ful
https://doi.org/10.3389/fonc.2020.00320

39. Keeney M, Hedley BD, Chin-Yee IH. Flow cytometry-Recognizing unusual populations in leukemia and lymphoma diagnosis. Int J Lab Hematol [Internet]. 2017 [citado 21 may 2021];39:86-92. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/ijlh.12666
https://doi.org/10.1111/ijlh.12666

40. Marsán Suárez V, Macías Abraham C, Díaz Domínguez G, Morales Garrido Y, Lam Díaz RM, Machín García S, González Otero A, et al. Expresión del antígeno CD45 en la Leucemia Linfoide aguda Pediátrica. Rev Cubana Hematol Inmunol Hemoter [Internet]. 2017 [citado 21 may 2021]; 33(2):[aprox. 0 p.]. Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/513

41. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytom Part B - Clin Cytom [Internet]. 2016 [citado 8 jun 2021];90(1):47-53. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21239
https://doi.org/10.1002/cyto.b.21239

42. Chatterjee T, Mallhi RS, Venkatesan S. Minimal residual disease detection using flow cytometry: Applications in acute Leukemia. Med J Armed Forces India [Internet]. 2016 [citado 8 jun 2021];72(2):152-6. Available from: http://dx.doi.org/10.1016/j.mjafi.2016.02.002
https://doi.org/10.1016/j.mjafi.2016.02.002

43. Chen X, Wood BL. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev [Internet]. 2017 [citado 23 jun 2021];31(2):63-75. Disponible en: http://dx.doi.org/10.1016/j.blre.2016.09.006
https://doi.org/10.1016/j.blre.2016.09.006

44. Wenzinger C, Williams E, Gru AA. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep [Internet]. 2018 [citado 30 jun 2021];13(4):275-88. Disponible en: https://link.springer.com/article/10.1007/s11899-018-0456-8
https://doi.org/10.1007/s11899-018-0456-8

45. Xia M, Zhang H, Lu Z, Gao Y, Liao X, Li H. Key markers of minimal residual disease in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol [Internet]. 2016 [citado 6 jul 2021];38(6):418-22. Disponible en: https://journals.lww.com/jpho-online/Abstract/2016/08000/Key_Markers_of_Minimal_Residual_Disease_in.2.aspx
https://doi.org/10.1097/MPH.0000000000000624

46. Popov A, Henze G, Verzhbitskaya T, Roumiantseva J, Lagoyko S, Khlebnikova O, et al. Absolute count of leukemic blasts in cerebrospinal fluid as detected by flow cytometry is a relevant prognostic factor in children with acute lymphoblastic leukemia. J Cancer Res Clin Oncol [Internet]. 2019 [citado 6 jul 2021];145(5):1331-9. Disponible en: http://dx.doi.org/10.1007/s00432-019-02886-3
https://doi.org/10.1007/s00432-019-02886-3

47.McShane LM, Smith MA. Prospects for Minimal Residual Disease as a Surrogate Endpoint in Pediatric Acute Lymphoblastic Leukemia Clinical Trials. JNCI Cancer Spectrum [Internet]. 2018 [citado 17 jul 2021]; 2(4):pky070. Disponible en: https://doi.org/10.1093/jncics/pky070
https://doi.org/10.1093/jncics/pky070

48. Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, Buldini B, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica [Internet]. 2015 [citado 26 jul 2021];100(7):935-44. Disponible en: https://haematologica.org/article/view/7439
https://doi.org/10.3324/haematol.2014.116707

49. Bruggemann M, Kotrova M. Minimal residual disease in adult ALL: Technical aspects and implications for correct clinical interpretation. Blood Adv [Internet]. 2017 [citado 31 jul 2021];1(25):2456-66. Disponible en: https://ashpublications.org/hematology/article/2017/1/13/21072/Minimal-residual-disease-in-adult-ALL-technical
https://doi.org/10.1182/bloodadvances.2017009845

50. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol [Internet]. 2011 [citado 22 ago 2021];29(9):1190-7. Disponible en: https://www.hindawi.com/journals/lrt/2014/421723/
https://doi.org/10.1200/JCO.2010.31.8121

51. Gökbuget N. How should we treat a patient with relapsed Ph-negative B-ALL and what novel approaches are being investigated? Best Pract Res Clin Haematol [Internet]. 2017 [citado 22 ago 2021];30(3):261-74. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1521692617300270?via%3Dihub
https://doi.org/10.1016/j.beha.2017.07.010

52. Tembhare PR, Narula G, Khanka T, Ghogale S, Chatterjee G, Patkar N V., et al. Post-induction Measurable Residual Disease Using Multicolor Flow Cytometry Is Strongly Predictive of Inferior Clinical Outcome in the Real-Life Management of Childhood T-Cell Acute Lymphoblastic Leukemia: A Study of 256 Patients. Front Oncol [Internet]. 2020 [citado 22 ago 2021];10(April):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00577/full
https://doi.org/10.3389/fonc.2020.00577

53. Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematol (United States) [Internet]. 2014 [citado 29 ago 2021];2014(1):244-9. Available from: https://ashpublications.org/hematology/article/2014/1/244/20518/Detection-and-management-of-minimal-residual
https://doi.org/10.1182/asheducation-2014.1.244

54. Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, et al. Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci [Internet]. 2020 [citado 29 ago 2021];21(3). Disponible en: https://www.mdpi.com/1422-0067/21/3/1054/htm
https://doi.org/10.3390/ijms21031054

55. Abou Dalle I, Jabbour E, Short NJ. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Ther Adv Hematol [Internet]. 2020 [citado 06 sep 2021];11:204062072091002. Disponible en: https://journals.sagepub.com/doi/10.1177/2040620720910023
https://doi.org/10.1177/2040620720910023

56. Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2016 [citado 06 sep 2021];27:v69-82. Disponible en: http://dx.doi.org/10.1093/annonc/mdw025
https://doi.org/10.1093/annonc/mdw025

57. Pui C-H, Pei D, Raimondi SC, Coustan-Smith E, Jeha S, Cheng C, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia [Internet]. 2017 [citado 06 sep 2021];31(2):333-9. Available from: http://www.nature.com/articles/leu2016234
https://doi.org/10.1038/leu.2016.234

58. Campana D, Pui C. Evidence-Based Focused Review Minimal residual disease - guided therapy in childhood acute lymphoblastic leukemia Case presentations. Blood [Internet]. 2017 [citado 06 sep 2021];129(14):1913-9. Disponible en: https://ashpublications.org/blood/article/129/14/1913/35887/Minimal-residual-disease-guided-therapy-in
https://doi.org/10.1182/blood-2016-12-725804

59. Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer [Internet]. 2015 [citado 06 sep 2021];121(15):2517-28. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29383
https://doi.org/10.1002/cncr.29383

60. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology [Internet]. 2016 [citado 06 sep 2021];2016(1):580-8. Disponible en: https://ashpublications.org/hematology/article/2016/1/580/21136/T-cell-acute-lymphoblastic-leukemia
https://doi.org/10.1182/asheducation-2016.1.580

Descargas

La descarga de datos todavía no está disponible.