Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda
Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda
NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.
Furthermore, the authors keep their property intellectual rights over the articles.
Show authors biography
Flow cytometry (FCM) is a technique that allows multiparametric analysis of cell populations, which is essential in biomedical research and as a diagnostic tool. This technique is characterized by high sensitivity and speed, evaluating in the population of interest characteristics such as size, granularity, the complexity of the cell cytoplasm, and proteins that allow phenotypic and functional differentiation.
Remarkable progress has now been made using FCM, which has made it possible to identify cell populations more specifically and sub-classify them through the conjugation of various antigen-specific monoclonal antibodies capable of recognizing a complete set of proteins. For these reasons, this technique has become important in the diagnosis and monitoring of diseases and hematological abnormalities, such as leukemia, myelodysplastic syndromes, and myeloproliferative syndromes, among others.
In this context, this review focuses on advances in the implementation of CMF in Minimal Residual Disease (MRD) present in Acute Lymphoblastic Leukemia (ALL), which is a minimal leukemic population that is detected in a patient after providing cancer treatment, where its effectiveness, the risk of relapse and the complete remission process are evaluated.
Article visits 313 | PDF visits 898
Downloads
- Instituto Nacional de Salud. Comportamiento epidemiológico de cáncer en menores de 18 años, periodo 2015 a 2020, Colombia. Boletín Epidemiológico Semanal [Internet]. 2021 [citado 5 oct 2020]. Disponible en: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_5.pdf
- https://doi.org/10.33610/23576189.2021.18
- Villalba CP, Martínez PA, Acero H. Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014. Pediatría (Santiago) [Internet]. 2016 [citado 14 oct 2020];49(1):17-22. Disponible en: https://www.sciencedirect.com/science/article/pii/S0120491216000148
- https://doi.org/10.1016/j.rcpe.2016.01.002
- Gacha Garay MJ, Akle V, Enciso L, Garavito Aguilar ZV. La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia. Rev Colomb Cancerol [Internet]. 2017 [citado 20 oct 2020];21(4):212-224. Disponible en: https://www.revistacancercol.org/index.php/cancer/article/view/182
- https://doi.org/10.1016/j.rccan.2016.10.001
- Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood [Internet]. 2016 [citado 26 oct 2020];127(20):2391-405. Disponible en: https://ashpublications.org/blood/article/127/20/2391/35255/The-2016-revision-to-the-World-Health-Organization
- https://doi.org/10.1182/blood-2016-03-643544
- Grimwade LF, Fuller KA, Erber WN. Applications of imaging flow cytometry in the diagnostic assessment of acute leukaemia. Methods [Internet]. 2017 [citado 10 nov 2020]; 112:39-45. Disponible en: http://dx.doi.org/10.1016/j.ymeth.2016.06.023
- https://doi.org/10.1016/j.ymeth.2016.06.023
- Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol [Internet]. 2017 [citado 17 nov 2020];3(7):1-9. Disponible en: https://jamanetwork.com/journals/jamaoncology/fullarticle/2626509
- https://doi.org/10.1001/jamaoncol.2017.0580
- Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2016 [citado 25 nov 2020];101(4):407-16. Disponible en: http://www.haematologica.org/lookup/doi/10.3324/haematol.2015.141101
- https://doi.org/10.3324/haematol.2015.141101
- Sabath DE. Minimal Residual Disease. Leukemia & Lymphoma Society [Internet]. 2018 [citado 25 nov 2020];1(35). Disponible en: https://www.lls.org/sites/default/files/National/USA/Pdf/Publications/FS35_MRD_Final_2019.pdf
- Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J [Internet]. 2017 [citado 30 nov 2020];7(6):e577. Disponible en: https://www.nature.com/articles/bcj201753
- https://doi.org/10.1038/bcj.2017.53
- Tan SH, Bertulfo FC, Sanda T. Leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2017 [citado 9 dic 2020];7. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2017.00218/full
- https://doi.org/10.3389/fonc.2017.00218
- Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol [Internet]. 2020 [citado 13 dic 2020];10:1-11. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00273/full
- https://doi.org/10.3389/fonc.2020.00273
- Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, et al. Unique clinico-biological, genetic and prognostic features of adult early T-cell precursor acute lymphoblastic leukemia. Haematologica [Internet]. 2020 [citado 13 dic 2020];105(6):e294-7. Disponible en: https://haematologica.org/article/view/9459
- https://doi.org/10.3324/haematol.2019.225078
- Heikamp EB, Pui C-H. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr [Internet]. 2018 [citado 19 dic 2020];203:14-24.e2. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022347618309442
- https://doi.org/10.1016/j.jpeds.2018.07.039
- Sentís I, Gonzalez S, Genescà E, García-Hernández V, Muiños F, Gonzalez C, et al. The evolution of relapse of adult T cell acute lymphoblastic leukemia. Genome Biol [Internet]. 2020 [citado 22 dic 2020];21(1):1-24. Disponible en: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02192-z
- https://doi.org/10.1186/s13059-020-02192-z
- Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol [Internet]. 2017 [citado 27 dic 2020];35(9):975-83. Disponible en: https://ascopubs.org/doi/10.1200/JCO.2016.70.7836
- https://doi.org/10.1200/JCO.2016.70.7836
- Van Dongen JJM, Van Der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood [Internet]. 2015 [citado 5 ene 2021]; 125(26):3996-4009. Disponible en: https://ashpublications.org/blood/article/125/26/3996/34323/Minimal-residual-disease-diagnostics-in-acute
- https://doi.org/10.1182/blood-2015-03-580027
- Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 5 ene 2021];7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
- https://doi.org/10.3389/fimmu.2016.00403
- Del Príncipe MI, De Bellis E, Gurnari C, Buzzati E, Savi A, Consalvo MAI, et al. Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn [Internet]. 2019 [citado 12 ene 2021];19(12):1089-97. Disponible en: https://doi.org/10.1080/14737159.2019.1691918
- https://doi.org/10.1080/14737159.2019.1691918
- Azad A, Rajwa B, Pothen A. Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front Oncol [Internet]. 2016 [citado 17 ene 2021];6(AUG):1-20. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2016.00188/full
- https://doi.org/10.3389/fonc.2016.00188
- Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol [Internet]. 2017 [citado 26 ene 2021];37(2):163-76. Disponible en: https://www.tandfonline.com/doi/full/10.3109/07388551.2015.1128876
- https://doi.org/10.3109/07388551.2015.1128876
- Tembhare P, Badrinath Y, Ghogale S, Patkar N, Dhole N, Dalavi P, et al. A novel and easy FxCycleTM violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytom Part A [Internet]. 2016 [citado 26 ene 2021];89(3):281-91. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.22803
- https://doi.org/10.1002/cyto.a.22803
- Kalina T, Lundsten K, Engel P. Relevance of Antibody Validation for Flow Cytometry. Cytom Part A [Internet]. 2020 [citado 8 feb 2021];97(2):126-36. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.a.23895
- https://doi.org/10.1002/cyto.a.23895
- Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer [Internet]. 2016 [citado 12 feb 2021];16(8):494-507. Disponible en: http://dx.doi.org/10.1038/nrc.2016.63
- https://doi.org/10.1038/nrc.2016.63
- DiGiuseppe JA, Wood BL. Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytom Part B - Clin Cytom [Internet]. 2019 [citado 19 feb 2021];96(4):256-65. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21833
- https://doi.org/10.1002/cyto.b.21833
- Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et al. Patients over 40 years old with precursor T-cell lymphoblastic lymphoma have different prognostic factors comparing to the youngers. Sci Rep [Internet]. 2018 [citado 25 feb 2021];8(1):1-7. Disponible en: https://www.nature.com/articles/s41598-018-19565-x
- https://doi.org/10.1038/s41598-018-19565-x
- Sun J, Wang L, Liu Q, Tárnok A, Su X. Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification. Biomed Opt Express [Internet]. 2020 [citado 5 mar 2021];11(11):6674. Disponible en: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-11-11-6674&id=441886
- https://doi.org/10.1364/BOE.405557
- Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol [Internet]. 2015 [citado 14 mar 2021];144(3):393-410. Disponible en: https://academic.oup.com/ajcp/article/144/3/393/1760791
- https://doi.org/10.1309/AJCPAN7BH5DNYWZB
- Noronha EP, Codeço Marques LV, Andrade FG, Santos Thuler LC, Terra-Granado E, Pombo-De-Oliveira MS. The profile of immunophenotype and genotype aberrations in subsets of pediatric T-cell acute lymphoblastic leukemia. Front Oncol [Internet]. 2019 [citado 22 mar 2021];9:1-10. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2019.00316/full
- https://doi.org/10.3389/fonc.2019.00316
- Rocha JMC, Xavier SG, Souza ME de L, Murao M, de Oliveira BM. Comparison between flow cytometry and standard PCR in the evaluation of MRD in children with acute lymphoblastic leukemia treated with the GBTLI LLA-2009 protocol. Pediatr Hematol Oncol [Internet]. 2019 [citado 30 mar 2021];36(5):287-301. Disponible en: https://doi.org/10.1080/08880018.2019.1636168
- https://doi.org/10.1080/08880018.2019.1636168
- Rytting ME, Jabbour EJ, O'Brien SM, Kantarjian HM. Acute lymphoblastic leukemia in adolescents and young adults. Cancer [Internet]. 2017 [citado 4 abr 2021];123(13):2398-403. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.30624
- https://doi.org/10.1002/cncr.30624
- Ministerio de salud y Protección Social. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblásticas y mieloide en población mayor de 18 años. Circulación [Internet]. 2017 [citado 4 abr 2021]; 126: 37. Disponible en: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_563/GPC_Leucemia_Mayores_18años/LEUCEMIAS - profesionalesDIC29_WEB.pdf
- Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing. Front Immunol [Internet]. 2016 [citado 10 abr 2021]; 7:1-11. Disponible en: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00403
- https://doi.org/10.3389/fimmu.2016.00403
- Keegan A, Charest K, Schmidt R, Briggs D, Deangelo DJ, Li B, et al. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease. J Clin Pathol [Internet]. 2018 [citado 18 abr 2021];1-6. Disponible en: https://jcp.bmj.com/content/71/7/653
- https://doi.org/10.1136/jclinpath-2017-204828
- Fossat C, Roussel M, Arnoux I, Asnafi V, Brouzes C, Garnache-Ottou F, et al. Methodological aspects of minimal residual disease assessment by flow cytometry in acute lymphoblastic leukemia: A french multicenter study. Cytom Part B - Clin Cytom [Internet]. 2015 [citado 24 abr 2021];88(1):21-9. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21195
- https://doi.org/10.1002/cyto.b.21195
- Thulasi Raman R, Anurekha M, Lakshman V, Balasubramaniam R, Ramya U, Revathi R. Immunophenotypic modulation in pediatric B lymphoblastic leukemia and its implications in MRD detection. Leuk Lymphoma [Internet]. 2020 [citado 24 abr 2021];61(8):1974-80. Disponible en: https://doi.org/10.1080/10428194.2020.1742902
- https://doi.org/10.1080/10428194.2020.1742902
- Ravandi F, Jorgensen JL, O'Brien SM, Jabbour E, Thomas DA, Borthakur G, et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol [Internet]. 2016 [citado 30 abr 2021];172(3):392-400. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjh.13834
- https://doi.org/10.1111/bjh.13834
- Li HF, Meng WT, Jia YQ, Jiang NG, Zeng TT, Jin YM, et al. Development-Associated immunophenotypes reveal the heterogeneous and individualized early responses of adult B-Acute lymphoblastic leukemia. Med (United States) [Internet]. 2016 [citado 6 may 2021];95(34). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400307/
- https://doi.org/10.1097/MD.0000000000004128
- Li SQ, Fan QZ, Xu LP, Wang Y, Zhang XH, Chen H, et al. Different Effects of Pre-transplantation Measurable Residual Disease on Outcomes According to Transplant Modality in Patients With Philadelphia Chromosome Positive ALL. Front Oncol [Internet]. 2020 [citado 15 may 2021];10(March):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00320/ful
- https://doi.org/10.3389/fonc.2020.00320
- Keeney M, Hedley BD, Chin-Yee IH. Flow cytometry-Recognizing unusual populations in leukemia and lymphoma diagnosis. Int J Lab Hematol [Internet]. 2017 [citado 21 may 2021];39:86-92. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/ijlh.12666
- https://doi.org/10.1111/ijlh.12666
- Marsán Suárez V, Macías Abraham C, Díaz Domínguez G, Morales Garrido Y, Lam Díaz RM, Machín García S, González Otero A, et al. Expresión del antígeno CD45 en la Leucemia Linfoide aguda Pediátrica. Rev Cubana Hematol Inmunol Hemoter [Internet]. 2017 [citado 21 may 2021]; 33(2):[aprox. 0 p.]. Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/513
- Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytom Part B - Clin Cytom [Internet]. 2016 [citado 8 jun 2021];90(1):47-53. Disponible en: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.b.21239
- https://doi.org/10.1002/cyto.b.21239
- Chatterjee T, Mallhi RS, Venkatesan S. Minimal residual disease detection using flow cytometry: Applications in acute Leukemia. Med J Armed Forces India [Internet]. 2016 [citado 8 jun 2021];72(2):152-6. Available from: http://dx.doi.org/10.1016/j.mjafi.2016.02.002
- https://doi.org/10.1016/j.mjafi.2016.02.002
- Chen X, Wood BL. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev [Internet]. 2017 [citado 23 jun 2021];31(2):63-75. Disponible en: http://dx.doi.org/10.1016/j.blre.2016.09.006
- https://doi.org/10.1016/j.blre.2016.09.006
- Wenzinger C, Williams E, Gru AA. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep [Internet]. 2018 [citado 30 jun 2021];13(4):275-88. Disponible en: https://link.springer.com/article/10.1007/s11899-018-0456-8
- https://doi.org/10.1007/s11899-018-0456-8
- Xia M, Zhang H, Lu Z, Gao Y, Liao X, Li H. Key markers of minimal residual disease in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol [Internet]. 2016 [citado 6 jul 2021];38(6):418-22. Disponible en: https://journals.lww.com/jpho-online/Abstract/2016/08000/Key_Markers_of_Minimal_Residual_Disease_in.2.aspx
- https://doi.org/10.1097/MPH.0000000000000624
- Popov A, Henze G, Verzhbitskaya T, Roumiantseva J, Lagoyko S, Khlebnikova O, et al. Absolute count of leukemic blasts in cerebrospinal fluid as detected by flow cytometry is a relevant prognostic factor in children with acute lymphoblastic leukemia. J Cancer Res Clin Oncol [Internet]. 2019 [citado 6 jul 2021];145(5):1331-9. Disponible en: http://dx.doi.org/10.1007/s00432-019-02886-3
- https://doi.org/10.1007/s00432-019-02886-3
- McShane LM, Smith MA. Prospects for Minimal Residual Disease as a Surrogate Endpoint in Pediatric Acute Lymphoblastic Leukemia Clinical Trials. JNCI Cancer Spectrum [Internet]. 2018 [citado 17 jul 2021]; 2(4):pky070. Disponible en: https://doi.org/10.1093/jncics/pky070
- https://doi.org/10.1093/jncics/pky070
- Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, Buldini B, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica [Internet]. 2015 [citado 26 jul 2021];100(7):935-44. Disponible en: https://haematologica.org/article/view/7439
- https://doi.org/10.3324/haematol.2014.116707
- Bruggemann M, Kotrova M. Minimal residual disease in adult ALL: Technical aspects and implications for correct clinical interpretation. Blood Adv [Internet]. 2017 [citado 31 jul 2021];1(25):2456-66. Disponible en: https://ashpublications.org/hematology/article/2017/1/13/21072/Minimal-residual-disease-in-adult-ALL-technical
- https://doi.org/10.1182/bloodadvances.2017009845
- Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol [Internet]. 2011 [citado 22 ago 2021];29(9):1190-7. Disponible en: https://www.hindawi.com/journals/lrt/2014/421723/
- https://doi.org/10.1200/JCO.2010.31.8121
- Gökbuget N. How should we treat a patient with relapsed Ph-negative B-ALL and what novel approaches are being investigated? Best Pract Res Clin Haematol [Internet]. 2017 [citado 22 ago 2021];30(3):261-74. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1521692617300270?via%3Dihub
- https://doi.org/10.1016/j.beha.2017.07.010
- Tembhare PR, Narula G, Khanka T, Ghogale S, Chatterjee G, Patkar N V., et al. Post-induction Measurable Residual Disease Using Multicolor Flow Cytometry Is Strongly Predictive of Inferior Clinical Outcome in the Real-Life Management of Childhood T-Cell Acute Lymphoblastic Leukemia: A Study of 256 Patients. Front Oncol [Internet]. 2020 [citado 22 ago 2021];10(April):1-13. Disponible en: https://www.frontiersin.org/articles/10.3389/fonc.2020.00577/full
- https://doi.org/10.3389/fonc.2020.00577
- Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematol (United States) [Internet]. 2014 [citado 29 ago 2021];2014(1):244-9. Available from: https://ashpublications.org/hematology/article/2014/1/244/20518/Detection-and-management-of-minimal-residual
- https://doi.org/10.1182/asheducation-2014.1.244
- Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, et al. Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci [Internet]. 2020 [citado 29 ago 2021];21(3). Disponible en: https://www.mdpi.com/1422-0067/21/3/1054/htm
- https://doi.org/10.3390/ijms21031054
- Abou Dalle I, Jabbour E, Short NJ. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Ther Adv Hematol [Internet]. 2020 [citado 06 sep 2021];11:204062072091002. Disponible en: https://journals.sagepub.com/doi/10.1177/2040620720910023
- https://doi.org/10.1177/2040620720910023
- Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2016 [citado 06 sep 2021];27:v69-82. Disponible en: http://dx.doi.org/10.1093/annonc/mdw025
- https://doi.org/10.1093/annonc/mdw025
- Pui C-H, Pei D, Raimondi SC, Coustan-Smith E, Jeha S, Cheng C, et al. Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with Response-Adapted therapy. Leukemia [Internet]. 2017 [citado 06 sep 2021];31(2):333-9. Available from: http://www.nature.com/articles/leu2016234
- https://doi.org/10.1038/leu.2016.234
- Campana D, Pui C. Evidence-Based Focused Review Minimal residual disease - guided therapy in childhood acute lymphoblastic leukemia Case presentations. Blood [Internet]. 2017 [citado 06 sep 2021];129(14):1913-9. Disponible en: https://ashpublications.org/blood/article/129/14/1913/35887/Minimal-residual-disease-guided-therapy-in
- https://doi.org/10.1182/blood-2016-12-725804
- Jabbour E, O'Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer [Internet]. 2015 [citado 06 sep 2021];121(15):2517-28. Disponible en: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29383
- https://doi.org/10.1002/cncr.29383
- Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology [Internet]. 2016 [citado 06 sep 2021];2016(1):580-8. Disponible en: https://ashpublications.org/hematology/article/2016/1/580/21136/T-cell-acute-lymphoblastic-leukemia
- https://doi.org/10.1182/asheducation-2016.1.580