Identificación microbiológica de marchitez vascular en col china (Brassica campestris L. var pekinensis) en Cogua, Colombia

Contenido principal del artículo

Autores

Ligia Sánchez
Yesid Ariza
Estefania Castañeda
Edgar Martinez

Resumen

La col china (Brassica campestris L. var pekinensis) es una hortaliza de origen asiático apreciada en todos los continentes por su valor nutricional y propiedades medicinales. Reportes de productores de todo el país han manifestado que hay pérdidas económicas en este cultivo al parecer originadas por enfermedades bacterianas; una de ellas es la marchitez bacteriana, que disminuye el tiempo de viabilidad del producto, también su continuidad en el mercado y, en consecuencia, la no utilización del mismo por parte del consumidor. Cultivadores en Cogua, Colombia reportan pérdidas de un 80% en su producción a causa de esta patología. La principal manifestación es la presencia de lesiones húmedas y marchitez en los bordes externos de las hojas.


 


El objetivo de este proyecto fue la identificación microbiológica de los posibles patógenos de la marchitez bacteriana en un cultivo de col china en Cogua, Colombia. La metodología utilizada incluyó el análisis de los microorganismos presentes en plantas sanas y enfermas, el aislamiento de bacterias de las lesiones vasculares, la elaboración de pruebas de patogenicidad y la identificación fenotípica del patógeno. Los resultados permitieron concluir que el microorganismo patógeno que ocasionaba marchitez bacteriana en los cultivos de col china en Cogua, Colombia era Xanthomonas axonopodis. La identificación de patógenos en plantas de interés económico permite tomar medidas más eficientes referentes a las buenas prácticas agrícolas para manejar enfermedades en plantas y disminuir las pérdidas de producción.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1. Bell PR, Hemsley AR. Green Plants: their origin and diversity. 2° ed. Reino Unido: Cambridge University Press; 2000.
2. Duke JA, Jo Bogenschutz-Godwin M, DuCellier J, Duke P. Handbook of medicinal herbs. 2° ed. Estados Unidos: CRC Press; 2002.
3. Ebrary Reader. Dixon Geoffrey. R. Vegetable Brassicas and related crucifers. Cambridge: CABI publishing. 2006. Julio 2008. Disponible en: http://www.bases.unal.edu.co:2127/lib/unalbog/home.action
4. Prance Sir G, Nesbitt M. The cultural history of plants. New York: Routledge, 2005.
5. Plestsh R. Cultivo del repollo. Instituto Nacional de Tecnologia Agropecuaria. Estacion Experimental Agropecuaria Corrientes. Agencia de extension rural corrientes. Argentina. Noviembre 2006. Consultado en Julio 2008. Disponible en: http://www.inta.gov.ar/corrientes/info/documentos/doc_pagina/El%20cultivo%20del%20Repollo.pdf
6. Podsędek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review LWT - Food Science and Technology. 2007;40:1-11.
7. Jung UJ, Baek NI, Chung HG, Bang MH, Jeong TS, Lee KT. et al. Effects of the ethanol extract of the roots of Brassica rapa on glucose and lipid metabolism in C57BL/KsJ-db/db mice. Clin Nutr. 2008;27:158–167.
8. Dong L, Xia S, Gao F, Zhang D, Chen J, Zhang J. 3,3´-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol. 2010;79:715-721.
9. Ministerio de Agricultura y Desarrollo Rural. Acuerdo de competitividad de la cadena de Hortalizas. 2006. Consultado en julio de 2008. Disponible en: http://www.antioquia.gov.co/organismos/agricultura/hortofruticola/hortofruticola/acuerdo%20de%20competitividad.pdf
10. Ferrera-Cerrato R, Alarcon A. Microbiologia Agricola. Mexico. Trillas. 2007.
11. Anaya S, Romero J. Hortalizas: plagas y enfermedades. Mexico. Trillas. 2007.
12. Agrios G. Fitopatologia. 2° Ed. Mexico. Grupo Noriega Editores. 2002.
13. Kay S, Bonas U. How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol. 2009;12:37-43.
14. Gurlebeck D, Thieme F, Bonas U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol. 2006;163:233-255.
15. Watt TF, Vucur M, Baumgarth B, Watt SA, Niehaus K. Low molecular weight plant extract induces metabolic changes and the secretion of extracellular enzymes, but has a negative effect on the expression of the type-III secretion system in Xanthomonas campestris pv. campestris. J Biotechnol. 2009;140:59–67.
16. Pessarakli M. Handbook of plant and Crop physiology. 2° ed. Estados Unidos. Marcel Dekker. 2002.
17. Bradbury JF. Guide to plant pathogenic bacteria. Reino Unido. CAB international, Farnharm Royal.1986.
18. Poplawsky AR, Urban SC, Chun W. Biological Role of Xanthomonadin Pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol.2000;66:5123-5127.
19. Zapata M. Identificacion de razas de Xanthomonas campestris pv. Phaseoli en hojas de Phaseolus vulgaris. Mesoamericana.1997:8:44-52.
20. Poplawsky AR, Chun W. Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact. 1998;11:466-475.
21. Castano J, Mendoza del Rio L. Manual para el diagnostico de hongos, bacterias, virus y nematodos fitopatogenos. 1ra Edicion. Honduras: Zamorano Academia Press. 1997.
22. Rodriguez C. Microbiologia ambiental: manual de laboratorio. Universidad del Quindio. Facultad de Ciencias Basica y Tecnologias. Departamento de Biologia. 2000.
23. Bartha R, Atlas R. Ecologia microbiana y microbiologia ambiental. Madrid 4°. Edicion. Ed. Addison Wesley, 2002.
24. Reyes P, Reyes CA, Reyes F. Introduccion a la Agronomia. Mexico: Editorial Trillas. 2002.
25. Salisbury F, Ross CW. Fisiologia de las plantas. Ed. Paraninfo. 2000.
26. Raven PH, Evert RF, Eichhorn SE. Biology of plants. 7°. Edicion. New York: Freeman. 2005.
27. Jiang B, He Y, Cen W, Wei H, Jiang G, Jiang W, et al. The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol. 2008;159:216-220.
28. Chang JH, Goel A, Grant S, Dangl J. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr Opin Microbiol. 2004;7:11-18.
29. Ishihara H, Ponciano G, Leach JE, Tsuyumu S. Functional analysis of the 30 end of avrBs3/pthA genes from two Xanthomonas species. Physiol Mol Plant Pathol. 2003;63:329-338.
30. Gallo M, Ferrari E, Eliseo T, Amata I, Pertinhez T. Katsuyama A. et al. A new member of the ribbon-helix-helix transcription factor superfamily from the plant pathogen Xanthomonas axonopodis pv. citri. J Struct Biol. 2010;170:21-31.
31. Quirino BF, Candido ES, Campos PF, Franco OL, Kruger RH. Proteomic approaches to study plant–pathogen interactions. Phytochemistry. 2010;71: 351-362.
32. Wichmann G, Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics. 2004;166:693-706.
-------------------------------------------------------------------------------
DOI: http://dx.doi.org/10.22490/24629448.447

Descargas

La descarga de datos todavía no está disponible.