Skip to main navigation menu Skip to main content Skip to site footer

Microbiological identification of vascular wilt in Chinese cabbage (Brassica campestris L. var pekinensis) in Cogua, Colombia

Identificación microbiológica de marchitez vascular en col china (Brassica campestris L. var pekinensis) en Cogua, Colombia




Section
Artículo Original

How to Cite
Microbiological identification of vascular wilt in Chinese cabbage (Brassica campestris L. var pekinensis) in Cogua, Colombia. (2010). NOVA, 8(14). https://doi.org/10.22490/24629448.447

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Ligia Sánchez
    Yesid Ariza
      Estefania Castañeda
        Edgar Martinez

          Chinese cabbage (Brassica campestris L. var pekinensis) is an Asian vegetable appreciated in all continents for its nutritional value and medicinal properties. Reports from farmers across the country have shown that there are economic losses in this crop apparently caused by bacterial diseases, one of which is bacterial wilt, which decreases the time of viability of the product also its continuity in the market and therefore, non-use by the consumer. Growers in Cogua, Colombia reported an 80% loss in production due to this disease. The main symptom is the presence of moist lesions and wilting on the outer edges of the leaves.

           

          The objective of this project was the identification of potential microbiological pathogens of bacterial wilt in a Chinese cabbage crop in Cogua, Colombia. The methodology included the analysis of microorganisms in healthy and diseased plants, isolation of bacteria in the vascular lesions, the development of pathogenicity and phenotypic identification of the pathogen. The results concluded that the pathogen that caused bacterial wilt on crops of Chinese cabbage in Cogua, Colombia was Xanthomonas axonopodis. The identification of pathogens in plants of economic interest can take more effective measures relating to good agricultural practices to manage diseases in plants and reduce production losses.

          Article visits 224 | PDF visits 115


          Downloads

          Download data is not yet available.
          1. Bell PR, Hemsley AR. Green Plants: their origin and diversity. 2° ed. Reino Unido: Cambridge University Press; 2000.
          2. Duke JA, Jo Bogenschutz-Godwin M, DuCellier J, Duke P. Handbook of medicinal herbs. 2° ed. Estados Unidos: CRC Press; 2002.
          3. Ebrary Reader. Dixon Geoffrey. R. Vegetable Brassicas and related crucifers. Cambridge: CABI publishing. 2006. Julio 2008. Disponible en: http://www.bases.unal.edu.co:2127/lib/unalbog/home.action
          4. Prance Sir G, Nesbitt M. The cultural history of plants. New York: Routledge, 2005.
          5. Plestsh R. Cultivo del repollo. Instituto Nacional de Tecnologia Agropecuaria. Estacion Experimental Agropecuaria Corrientes. Agencia de extension rural corrientes. Argentina. Noviembre 2006. Consultado en Julio 2008. Disponible en: http://www.inta.gov.ar/corrientes/info/documentos/doc_pagina/El%20cultivo%20del%20Repollo.pdf
          6. Podsędek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review LWT - Food Science and Technology. 2007;40:1-11.
          7. Jung UJ, Baek NI, Chung HG, Bang MH, Jeong TS, Lee KT. et al. Effects of the ethanol extract of the roots of Brassica rapa on glucose and lipid metabolism in C57BL/KsJ-db/db mice. Clin Nutr. 2008;27:158–167.
          8. Dong L, Xia S, Gao F, Zhang D, Chen J, Zhang J. 3,3´-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol. 2010;79:715-721.
          9. Ministerio de Agricultura y Desarrollo Rural. Acuerdo de competitividad de la cadena de Hortalizas. 2006. Consultado en julio de 2008. Disponible en: http://www.antioquia.gov.co/organismos/agricultura/hortofruticola/hortofruticola/acuerdo%20de%20competitividad.pdf
          10. Ferrera-Cerrato R, Alarcon A. Microbiologia Agricola. Mexico. Trillas. 2007.
          11. Anaya S, Romero J. Hortalizas: plagas y enfermedades. Mexico. Trillas. 2007.
          12. Agrios G. Fitopatologia. 2° Ed. Mexico. Grupo Noriega Editores. 2002.
          13. Kay S, Bonas U. How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol. 2009;12:37-43.
          14. Gurlebeck D, Thieme F, Bonas U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol. 2006;163:233-255.
          15. Watt TF, Vucur M, Baumgarth B, Watt SA, Niehaus K. Low molecular weight plant extract induces metabolic changes and the secretion of extracellular enzymes, but has a negative effect on the expression of the type-III secretion system in Xanthomonas campestris pv. campestris. J Biotechnol. 2009;140:59–67.
          16. Pessarakli M. Handbook of plant and Crop physiology. 2° ed. Estados Unidos. Marcel Dekker. 2002.
          17. Bradbury JF. Guide to plant pathogenic bacteria. Reino Unido. CAB international, Farnharm Royal.1986.
          18. Poplawsky AR, Urban SC, Chun W. Biological Role of Xanthomonadin Pigments in Xanthomonas campestris pv. campestris. Appl Environ Microbiol.2000;66:5123-5127.
          19. Zapata M. Identificacion de razas de Xanthomonas campestris pv. Phaseoli en hojas de Phaseolus vulgaris. Mesoamericana.1997:8:44-52.
          20. Poplawsky AR, Chun W. Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact. 1998;11:466-475.
          21. Castano J, Mendoza del Rio L. Manual para el diagnostico de hongos, bacterias, virus y nematodos fitopatogenos. 1ra Edicion. Honduras: Zamorano Academia Press. 1997.
          22. Rodriguez C. Microbiologia ambiental: manual de laboratorio. Universidad del Quindio. Facultad de Ciencias Basica y Tecnologias. Departamento de Biologia. 2000.
          23. Bartha R, Atlas R. Ecologia microbiana y microbiologia ambiental. Madrid 4°. Edicion. Ed. Addison Wesley, 2002.
          24. Reyes P, Reyes CA, Reyes F. Introduccion a la Agronomia. Mexico: Editorial Trillas. 2002.
          25. Salisbury F, Ross CW. Fisiologia de las plantas. Ed. Paraninfo. 2000.
          26. Raven PH, Evert RF, Eichhorn SE. Biology of plants. 7°. Edicion. New York: Freeman. 2005.
          27. Jiang B, He Y, Cen W, Wei H, Jiang G, Jiang W, et al. The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol. 2008;159:216-220.
          28. Chang JH, Goel A, Grant S, Dangl J. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr Opin Microbiol. 2004;7:11-18.
          29. Ishihara H, Ponciano G, Leach JE, Tsuyumu S. Functional analysis of the 30 end of avrBs3/pthA genes from two Xanthomonas species. Physiol Mol Plant Pathol. 2003;63:329-338.
          30. Gallo M, Ferrari E, Eliseo T, Amata I, Pertinhez T. Katsuyama A. et al. A new member of the ribbon-helix-helix transcription factor superfamily from the plant pathogen Xanthomonas axonopodis pv. citri. J Struct Biol. 2010;170:21-31.
          31. Quirino BF, Candido ES, Campos PF, Franco OL, Kruger RH. Proteomic approaches to study plant–pathogen interactions. Phytochemistry. 2010;71: 351-362.
          32. Wichmann G, Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics. 2004;166:693-706.
          33. -------------------------------------------------------------------------------
          34. DOI: http://dx.doi.org/10.22490/24629448.447
          Sistema OJS 3.4.0.5 - Metabiblioteca |