Mitocondria y muerte celular

Contenido principal del artículo

Autores

Ruth Sánchez
Gonzalo Arboleda

Resumen

Recientemente se ha definido el papel decisivo que tienen las mitocondrias en los mecanismos de muerte celular, los cuales se han explicado en diversos modelos, donde la permeabilización de la membrana externa mitocondrial y la liberación de proteínas importantes del espacio intermembranal de la mitocondria son características importantes que definen este proceso. Específicamente proteínas pro-apoptóticas tales como Citocromo c, Smac/diablo entre otras, son liberadas durante estadios tempranos del proceso apoptótico. Los mecanismos por los cuales estas proteínas son liberadas dependen presumiblemente del tipo celular y la naturaleza del estímulo. La activación de las caspasas (proteasas de cisteína) durante la apoptosis temprana parece estar regulada principalmente por la familia de las proteínas Bcl-2, cuya función principal es el control de la permeabilidad de la membrana mitocondrial a través de la formación o regulación de poros, en particular el poro de permeabilidad transicional mitocondrial. La presente revisión busca mostrar una visión global del papel de la mitocondria en los procesos de muerte celular, en la apoptosis, y en algunos de los mecanismos moleculares involucrados en su regulación.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;12;407:770-776.
2. Amarante-Mendes GP, Green DR.The regulation of apoptotic cell death. Braz J Med Biol Res. 1999;32:1053-1061.
3. Alberts B,. Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. Omega Eds, España. 2002. pg. 767-769.
4. Lodish H. Biología celular y molecular. Médica Panamericana Eds., Madrid, 2006. pg. 513-634
5. Lehninger D, Michael N, Cox M. Principles of Biochemistry. Fourth Edition.2002. pg. 659-670
6. Ge ydan, Gil , Giraldo, Gonzá le z , Jaramillo, Maestre, McEwen, Muñetón, Ossa, Parra, Patiño, Ramírez, Rodríguez, Rojas Rugeles, Segura, Spinel, Yildiz, Vásquez. Biología de la célula. 1ª Ed. Colombia: Fondo Editorial Biogénesis. Mayo de 2006.
7. Grimm S, Brdiczka D. The permeability transition pore in cell death. Apoptosis. 2007;12:841-855.
8. Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2:589-598.
9. De Souza-Pinto NC, Wilson DM 3rd, Stevnsner TV, Bohr VA. Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair (Amst). 2008;1:1098-1109.
10. Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM. Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase- Akt pathway is inhibited by C2-ceramide in CAD cells. Eur JNeurosci. 2007;25:3030-3038.
11. Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M. Bcl-xL promotes the open configuration of the voltagedependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem. 2001;276:19414-19419.
12. Park JM, Greten FR, Wong A, Westrick RJ, Arthur JS, Otsu K, Hoffmann A, Montminy M, Karin M. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators. Immunity. 2005;23:319-329.
13. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405-413.
14. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26:61-66.
15. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577-1590.
16. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosisinducing factor. Nature. 1999;397:441-446.
17. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol. 1998;8:267-271.
18. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412:95-99.
19. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996;183:1533-1544.
20. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192:571-580.
21. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770-776.
22. Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16:139-144.
23. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147-157.
24. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43-53.
25. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33-42.
26. Parone PA, James D, Martinou JC. Mitochondria: regulating the inevitable. Biochimie. 2002;84:105-111.
27. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress:implications for cell death. Annu Rev Pharmacol Toxicol. 2007; 47:143-83.
28. Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr. 2008;40:199-205.
29. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med. 1999;189:381-394.
30. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004; 304:843-846.
31. Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact. 2006;163:4-14.
32. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora’s Box opens. Nat Rev Mol Cell Biol. 2001;2:67-71.
33. Shoshan-Barmatz V, Keinan N, Zaid H. Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr. 2008;40:183-191.
34. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399:483-487.
35. Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA. 1998;95:1455-1459.
36. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 199615;87:619-628.
37. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from
mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481-490.
38. Murphy KM, Streips UN, Lock RB. Bcl-2 inhibits a Fas-induced conformational change in the Bax N terminus and Bax mitochon drial translocation.J Biol Chem. 2000;275:17225-17228.
39. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA. 19988;95:14681-14686.
40. Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HL, Prévost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998;281:2027-2031.
41. Rizzuto R, Brini M, Murgia M, Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993;262:744-747.
42. Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000;103:839-842.
43. Kelekar A, Thompson CB. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8:324-330.
44. Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004;5:752-762.
45. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144:891-901.
46. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999;3:287-296.
47. Ayllón V, Fleischer A, Cayla X, García A, Rebollo A. Segregation of Bad from lipid rafts is implicated in the induction of apoptosis. J Immunol. 2002; 168:3387-3393.
48. Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Cayla X, Garcia A, Rebollo A. Bad-dependent rafts alteration is a consequence of an early intracellular signal triggered by interleukin-4 deprivation. Mol Cancer Res. 2004;2:674-684.
49. del Peso L, González-García M, Page C, Herrera R, Nuñez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997;278:687-689.
50. Shimamura H, Terada Y, Okado T, Tanaka H, Inoshita S, Sasaki S. The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-kappa B and Bad. J Am Soc Nephrol. 2003; 14:1427-1434.
-------------------------------------------------------------------------------
DOI: http://dx.doi.org/10.22490/24629448.409

Descargas

La descarga de datos todavía no está disponible.