Development and use of a synthetic peptide for the detection of specific antibodies against Plasmodium falciparum
Evaluación y uso de un péptido sintético para la detección de anticuerpos específicos contra Plasmodium falciparum
NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.
Furthermore, the authors keep their property intellectual rights over the articles.
Show authors biography
Introduction. Malaria continues being one of the diseases causing the greatest morbi-mortality around the world. For that reason, effective diagnostic tools must thus be developed which can be used in strategies for controlling the disease. Objectives. To standardise enzyme-linked immunosorbent assay (ELISA) conditions for detecting Plasmodium falciparum specific IgG in sera from patients diagnosed by thick smear as suffering non-complicated malaria caused by P. falciparum. A protein extract obtained from P. falciparum culture or a synthetic peptide derived from glutamate rich protein (GLURP) merozoite surface protein would be used as antigen. Materials and Methods. 22 serum samples from patients diagnosed as suffering from P. falciparum malaria, 11 serum samples from patients diagnosed as suffering from P. vivax and 44 from healthy donors, diagnosed by using the thick smear tecnique were used for standarising the technique. Serum samples were tested against parasite protein extract and GLURP-derived IMT 94 synthetic peptide for standardisign optimum dilutions and concentrations for each component in the system. 251 serum samples from patients diagnosed as suffering from P. falciparum malaria and 44 from healthy donors diagnosed by using the thick smear tecnique were used to validate the technique. Results. The technique led to significant differences being observed in antigens (protein extract and synthetic peptides) recognising serum from positive and negative patients and controls. Conclusions. The methodology used led to identifying specific immune response against P. falciparum.
Article visits 244 | PDF visits 155
Downloads
1. Lloveras, S.C., (Travellers to South America). Rev Chilena Infectol, 2011. 28(6): p. 520-8.
2. WHO, World malaria report 2017. World Health Organization, Geneva, Licence: CC BY-NC-SA 3.0 IGO., 2017.
3. Cerutti, C., Jr., et al., Epidemiologic aspects of the malaria transmission cycle in an area of very low incidence in Brazil. Malar J, 2007. 6: p. 33.
4. van Gool, T., et al., A simple and fast method to exclude high Plasmodium falciparum parasitaemia in travellers with imported malaria. Malar J, 2011. 10: p. 300.
5. Caballero, M.L., Inmunología de la infección por helmintos. Rev. Esp. Alergol Inmunol Clín., 1998. 13(6): p. 297-313.
6. Schroeder, H.W., Jr. and L. Cavacini, Structure and function of immunoglobulins. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S41-52.
7. Maestre, A., E. Arango, and J. Carmona-Fonseca, Status of allele frequency and diversity of Plasmodium falciparum msp1, msp2 and glurp before implementation of an artemisinin-based combined therapy in Northwestern Colombia. Colomb Med (Cali), 2013. 44(4): p. 208-12.
8. Barrera, S.M., et al., (Genotypic survey of Plasmodium falciparum based on the msp1, msp2 and glurp genes by multiplex PCR). Biomedica, 2010. 30(4): p. 530-8.
9. Amoah, L.E., et al., Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana. Parasit Vectors, 2017. 10(1): p. 395.
10. Espinal Carlos, et al., Aislamiento y caracterización de cepas colombianas de Plasmodium falciparum. Biomédica, 1982. 2(3): p. 118-128.
11. Trager, W. and J.B. Jensen, Human malaria parasites in continuous culture. Science, 1976. 193(4254): p. 673-5.
12. Rojas, M.O. and M. Wasserman, Supersincronizacion del crecimiento in vitro del Plasmodium falciparum / Synchronization of in vitro growth of Plasmodium falciparum. Biomedica, 1987. 7(3/4): p. 75-80.
13. Heiber A and S. T., Preparation of Parasite Protein Extracts and Western Blot Analysis. Bio-protocol, 2014. 4(11).
14. Borre, M.B., et al., Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol, 1991. 49(1): p. 119-31.
15. Noya, O., et al., Immunodiagnosis of parasitic diseases with synthetic peptides. Curr Protein Pept Sci, 2003. 4(4): p. 299-308.
16. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of American Chemical Society, 1963. 85(14): p. 2149-2154.
17. Houghten, R.A., General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A, 1985. 82(15): p. 5131-5.
18. Curtidor, H., et al., Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides, 2014. 53: p. 210-7.
19. Pal-Bhowmick, I., et al., Generation and characterisation of monoclonal antibodies specific to Plasmodium falciparum enolase. J Vector Borne Dis, 2006. 43(2): p. 43-52.
20. Pinilla B Gladys, Chavarro P Bibiana, Moreno A Natalia, Navarrete O Jeannette, Muñoz M Liliana. Determinación de los genes, 16S ADNr, polA, y TpN47, en la detección de Treponema pallidum subsp. pallidum para el diagnóstico de sífilis congénita. Nova. 2015; 13( 24 ): 17-25.
21. Carrero Sandra Helena Suescún, HerediaMontoya Dina Paola, Bolaños Yoryany Mulato, Medellín Martín Orlando Pulido. Seroprevalencia de infección por Leptospira y factores de riesgo en estudiantes de una universidad de Colombia. Nova. 2017; 15( 27 ): 131-138.