Skip to main navigation menu Skip to main content Skip to site footer

Microbial resistance from one metagenomic perspective

Resistencia microbiana desde una perspectiva metagenómica




Section
Articulo de Revisión

How to Cite
Microbial resistance from one metagenomic perspective. (2018). NOVA, 16(29), 91-100. https://doi.org/10.22490/24629448.2692

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Ospino Bejarano
    Castilla Pérez
      Sánchez Mora

        Objective. The purpose of this review is to cover the issues related to antibiotic resistance genes, their origins, reservoirs and movements in different habitats through functional metagenomics  that allows to isolate, identify and analyze these genes, as well as the impact they have on health public. During the last years a great advance in the microbiology has been seen, one of the great limitations to which the microbiologists had been facing was not being able to have access to the totality of the microorganisms that inhabit the planet. Thanks to the development of different disciplines such as metagenomics, access to these microorganisms has been achieved. Method. The importance of metagenomics in microbial resistance lies in the fact that currently only 1 % of the microorganisms that inhabit the soil can be studied by conventional microbiology techniques, leaving about 99 % of these without studying, the metagenomics by mitigating this great disadvantage allows the study of the soil microbiota in its entirety generating new knowledge and relevant information in different scientific fields. Results. Through functional metagenomics it has been possible to determine that the soil can be a possible reservoir of determinants of microbial resistance, because the microbiota that live there contain in their genetic material antibiotic resistance genes that confer resistance to a broad spectrum of antibiotics used in human therapy indiscriminately and also have all known mechanisms of resistance, some of these genes are generated by selective pressure against different agents present in their environment and others are constitutive genes that fulfill significant functions in their habitat. The great impact of these findings is that they can represent a possible public health risk if they were acquired by human pathogens.


        Article visits 407 | PDF visits 174


        Downloads

        Download data is not yet available.

        1. Handelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Mol. Biol. Rev. 2004; 68(4): 669–669. https://doi.org/10.1128/MBR.68.4.669– 685.2004
        2. Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Current Opinion in Biotechnology. 2003. https://doi.org/10.1016/S0958-1669(03)00067-3
        3. Streit WR, Schmitz RA. Metagenomics-The key to the un- cultured microbes. Current Opinion in Microbiology. 2004; 7(5): 492–498. https://doi.org/10.1016/j.mib.2004.08.002
        4. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unk- nown soil microbes: a new frontier for natural products. Chemistry & Biology. 1998; 5(10): R245–R249. https:// doi.org/10.1016/S1074-5521(98)90108-9
        5. Simon C, Daniel, R. Metagenomic analyses: Past and futu- re trends. Applied and Environmental Microbiology. 2011; 77(4): 1153–1161. https://doi.org/10.1128/AEM.02345-10
        6. Chen K, Pachter L. Bioinformatics for whole-genome shot- gun sequencing of microbial communities. PLoS Com- putational Biology. 2005; 1(2): 0106–0112. https://doi. org/10.1371/journal.pcbi.0010024
        7. Rondon MR, August PR, Bettermann AD, Brady SF, Gross- man TH, Liles MR, Goodman RM. Cloning the soil meta- genome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and En- vironmental Microbiology. 2000. https://doi.org/10.1128/ AEM.66.6.2541-2547.2000
        8. Daniel R. The soil metagenome - A rich resource for the dis- covery of novel natural products. Current Opinion in Biote- chnology. 2004. 15(3): 199–204. https://doi.org/10.1016/j.copbio.2004.04.005
        9. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012; 337(6098): 1107– 1111. https://doi.org/10.1126/science.1220761
        10. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resis- tomes cluster by ecology. ISME Journal. 2015; 9(1): 207– 216. https://doi.org/10.1038/ismej.2014.106
        11. Dcosta, VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Wright GD. Antibiotic resistance is ancient. Na- ture. 2011; 477(7365): 457–461. https://doi.org/10.1038/ nature10388
        12. Martínez JL, Coque TM, Baquero F. The influence of anti- biotic resistance on human and animal health and welfare; 2014. https://doi.org/10.1038/nrmicro3399
        13. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse b-lactamases in a remote Alaskan soil. The ISME Journal. 2009; 386, 243– 251. https://doi.org/10.1038/ismej.2008.86
        14. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance 9 genes. Environmental Microbiology. 2004. https://doi.or- g/10.1111/j.1462-2920.2004.00664.x
        15. Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein EC, McManus PS, Handelsman J. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Applied and Environmen- tal Microbiology. 2010; 76(13), 4396–4401. https://doi. org/10.1128/AEM.01763-09
        16. Rojas FAR, Ordoñez PSB, Sanchez MRM. Detección de Chlamydia trachomatis en hombres que tienen sexo con hombres en Bogotá: un estudio piloto. NOVA. 2016: 14(26): 17-27.
        17. Gillespie ES, Brady A, Bettermann N, Cianciotto R, Mark MR, Clardy R, Goodman AJ. (2002). Isolation of anti- biotic Turbomycin A and Turbomycin B from a metage- nomic library. Applied and Environmental Microbiolo- gy. 2002; 68(9): 4301–4306. https://doi.org/10.1128/ AEM.68.9.4301
        18. Van Elsas JD, Speksnijder AJ, Van Overbeek LS. A proce- dure for the metagenomics exploration of disease-suppressi- ve soils. Journal of Microbiological Methods. 2008; 75(3): 515–522. https://doi.org/10.1016/j.mimet.2008.08.004
        19. Hjort K, Presti I, Elväng A, Marinelli F, Sjöling S. Bacte- rial chitinase with phytopathogen control capacity from su- ppressive soil revealed by functional metagenomics. Applied Microbiology and Biotechnology. 2014; 98(6): 2819–2828. https://doi.org/10.1007/s00253-013-5287-x
        20. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. Bacterial phylogeny structures soil re- sistomes across habitats. Nature. 2014; 509(7502): 612–6. https://doi.org/10.1038/nature13377
        21. Udikovic-Kolic N, Wichmann F, Broderick NA, Handels- man J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proceedings of the National Academy of Sciences. 2014; 111(42): 15202–15207. https:// doi.org/10.1073/pnas.1409836111
        22. Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015; 13(2):116-23. https://doi: 10.1038/nrmicro3399. Epub 2014 Dec 15.
        23. Jutinico SA, Garzón JM, Chacón JM, Gómez M, Sanchez MRM Cultivo de la línea celular HEp-2: doblaje poblacio- nal y coloración con Giemsa. Perspectivas para el estudio de la infección con Chlamydia trachomatis. NOVA; 2013; 11(20).
        24. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome.Science. 2006; Jan 20;311(5759):374-7.
        25. Qiang J. Wei B, Yan C, Qiao M, Guan Y. Functional metage- nomic characterization of antibiotic resistance genes in agri- cultural soils from China. Environment International. 2014; 65: 9–15. https://doi.org/10.1016/j.envint.2013.12.010
        26. Su JQ, Wei B, Xu CY, Qiao M, Zhu YG. Functional me- tagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment international. 2014; 65: 9-15.
        27. Kozhevin PA, Vinogradova KA, Bulgakova VG. The Soil Antibiotic Resistome. 2013; 68 (2): 53–54. https://doi. org/10.3103/S014768741302004X
        28. Pinilla B Gladys, Chavarro P Bibiana, Moreno A Natalia, Navarrete O Jeannette, Muñoz M Liliana. Determinación de los genes, 16S ADNr, polA, y TpN47, en la detección de Treponema pallidum subsp. pallidum para el diagnóstico de sífilis congénita. Nova. 2015; 13( 24 ): 17-25.
        29. Corrales Lucia Constanza, Antolinez Romero Diana Mar- cela, Bohórquez Macías Johanna Azucena, Corredor Vargas Aura Marcela. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015; 13( 24 ): 55-81.
        30. Carrero Sandra Helena Suescún, HerediaMontoya Dina Pao- la, Bolaños Yoryany Mulato, Medellín Martín Orlando Puli- do. Seroprevalencia de infección por Leptospira y factores de riesgo en estudiantes de una universidad de Colombia. Nova. 2017; 15( 27 ): 131-138.
        31. Zuluaga Martha, Robledo Sebastian, Osorio-Zuluaga Ger- man A, Yathe Laura, Gonzalez Diana, Taborda Gonzalo. Me- tabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova. 2016; 14( 25): 121-138.
        32. Ávila de Navia Sara Lilia, Estupiñán-Torres Sandra Móni- ca, Díaz González Liliana. Calidad bacteriológica del agua Vereda El Charco, San Miguel de Sema, Boyacá- Colombia. Nova. 2016; 14( 25 ): 139-145.

        Sistema OJS 3.4.0.5 - Metabiblioteca |