Skip to main navigation menu Skip to main content Skip to site footer

Determinación cuantitativa de proteasas de bacterias psicrotróficas aisladas de leche cruda

Determinación cuantitativa de proteasas de bacterias psicrotróficas aisladas de leche cruda




Section
Artículo Original

How to Cite
Márquez, C., Piramanrique, K., Carrascal, A. K., Clavijo, B., & Quevedo, B. (2007). Determinación cuantitativa de proteasas de bacterias psicrotróficas aisladas de leche cruda. NOVA, 5(7). https://doi.org/10.22490/24629448.368

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Catherine Márquez
    Karen Piramanrique
      Ana Karina Carrascal
        Bernardo Clavijo
          Balkis Quevedo

            The general use of refrigeration on raw milk has contributed to maintenain its quality, but has induced the selection of psychotropic bacteria which during its growth produces heat-resistant enzymes responsible, in part, for the deterioration of long-life products. This study was designed for the quantification of proteolytic activity in six microorganisms that correspond to Pseudomonas fluorescens R12 y R13, Pseudomonas putida R20, Micrococcus luteus R16, Bacillus circulans R5 y Serratia liquefasciens R4, isolated and characterized of raw milk. Thestrains were cultured in milk broth 11% for kinetics profile and the experimental data was adjusted to the BaranyiModel. This Model guaranteed a suitable description of máx, td y Log UFC. Pseudomonas putida R20 showedthe best growing profile with umáx = 0,1066h-1 and td = 6,5023h. Proteolytic activity was determined according toHübner and it was established that Bacillus circulans R5, in a temperature of 5ºC, produced at the 4th fermentationhour the largest amount of proteases (3,618UP/mL) with the rest of the used strains. Finally, it was established thatthe temperature with the largest proteolytic activity was 5ºC and, as it increases, it causes a considerable decreasein protease production.

            Article visits 636 | PDF visits 373


            Downloads

            Download data is not yet available.
            1. Costa M, Gómez M, Molina l, Romero A. Growth kinetics and proteases production of pseudomonas fluorescens in raw milk at refrigeration. University Austral of Chile. ALAN. 2001;51:371375.
            2. Costa M, Gómez F, Molina H, Simpson R, Romero A. Purificación y caracterización de proteasas de Pseudomonas fluorescens y sus efectos sobre las proteínas de la leche. Instituto de ciencia y tecnología de alimentos, ICYTAL Universidad Austral de Chile. ALAN. 2002;52:160-166.
            3. Baranyi J, Mcclure P, Sutherland J, Roberts T. Modeling bacterial growth responses. J Ind Microbiol. 1993;12:190-194.
            4. Baranyi J, Roberts T, Mcclure P. A non-autonomous differential equation to model bacterial growth. Food Microbiol. 1993;10:43-59.
            5. Robinson R, Phil D. Microbiología lactológica. V1. Ed. Acribia. Zaragoza–España 1987.
            6. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochem. 1976;72:248-254.
            7. Hübner U. Entwicklung neuer On-Line- Analysenmethoden zur Steuerung and Regelung von protease fermentationen. Dissertation University of Hanover. 1991.
            8. Baranyi J, Robinson T, Mackey B. Predicting growth of Brochotrix thermophacta at changing temperature. Int J Food Microbiol. 1995;27:61-75.
            9. Pereira C, Barreto M, San Romão M. Evidence for proteolytic activity and biogenic amines production in Lactobacillus curvatus and L..homohiochii. Inter J Food Microbiol. 2001;68:211-216.
            10. . Hübner U, Bock U, Schügerl K. Production of alkaline serine protease subtilisin Carlsberg by Bacillus licheniformis on complex medium in a stirred tank reactor. App Microbiol Biotechnol. 1993;40:182-188.
            11. Zaliha R, Razak N, Ampon K, Basri M, Wan M, Yunus W, Salleh A. Purification and characterization of a heat-stable alkaline protease form Bacillus stearothermophilus F1. Appl Microbiol Biotechnol. 1994;40:822-827.
            12. . Fairbairn D, Law B. Proteinases of psychotropic bacteria: their production, properties, effects and control. J Dairy Res. 1986;53:457-466.
            13. . Cujavante A, Rico M, Clavijo B. Aislamiento y caracterización de microorganismo psicotrofos con actividad proteolítica en la leche cruda. Tesis de pregrado. Pontificia Universidad Javeriana. Facultad de Ciencias, Bogotá. 2002.
            14. . Hoshino T, Ishizaki K, SakamotoT, Kumeta H, Yumoto J, Matsuyama H, Ohgiya S. Isolation of a Pseudomonas species from fish intestine that produces a a protease active al low temperature. Lett Appl Microbiol. 1997; 25:70-72.
            15. . Baranyi J, Roberts T. A dynamic approach to predicting bacterial growth in food. Int J. Food Microbiol. 1994;23:277-294.
            16. . Baranyi J, Roberts T. Mathematics of predictive food microbiology. Int J Food Microbiol. 1995;26:199-218.
            17. . Zwietering M, Jonegenburger I, Rombouts F, Van’t Riet K. Modelling of the bacterial growth curve. Appl. Env. Microbiol. 1990;56:1875-1881.
            18. -----------------------------------------------------------------------------------
            19. DOI: http://dx.doi.org/10.22490/24629448.368
            Sistema OJS 3.4.0.5 - Metabiblioteca |