Skip to main navigation menu Skip to main content Skip to site footer

Determination of adhesion factors associated with biofilm formation in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis

Determinación de factores de adhesión asociados a la formación de biopelícula en aislamientos clínicos de Staphylococcus aureus y Staphylococcus epidermidis




Section
Artículo Original

How to Cite
Pinilla, G., Bautista, A., Cruz, C., Chavarro, B., Navarrete, J., Muñoz, L., & Gutiérrez, J. (2017). Determination of adhesion factors associated with biofilm formation in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis. NOVA, 15(27), 67-75. https://doi.org/10.22490/24629448.1959

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Gladys Pinilla
    Angela Bautista
      Claudia Cruz
        Bibiana Chavarro
          Jeannette Navarrete
            Liliana Muñoz
              Jennifer Gutiérrez

                Adhesion factors are virulence determinants that are expressed in microorganisms with the ability to form biofilms, contributing to the severity of nosocomial infections. Among these microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), are fibronectin binding A and B (fnbA and B) clumping A and B (ClfA and B) and fibrinogen binding (Fib) factors. All of these have been described in Staphylococcus aureus and react with human extracellular matrix proteins. The goal of this study was to determine adhesion factors related to the biofilm formation in Staphylococcus. Method. For these purpose, 30 clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis, from immunocompromised patients in three hospitals in Bogotá were characterized both, genotypically and phenotypically. The biofilm formation was determined through Congo Red and Violet Crystal and the genes FnbA, B, ClfA, B, Fib and operon ica ADBC were amplified through conventional and multiplex PCR. Results. Every clinical isolate were genotypically and phenotypically positive for the biofilm formation, being found the presence of the whole ica ADBC operon in 88,9%. The ClfA and ClfB were found by 70%; Fib 60%, fnbB 23% and 17% of fnbA. Conclusions. This study proved the presence of these virulence factorsin S. epidermidis, which so far have only been reported in S. aureus. This finding is important because it suggestes the relationship with horizontal gene transfer between these species, being the S. epidermidis an important genetic reservoir and a causal patobiont of nosocomial infections associated with medical devices.

                Article visits 650 | PDF visits 161


                Downloads

                Download data is not yet available.
                1. REFERENCIAS
                2. Betancourth M, Botero J, Patricia S. Biopelículas: una comunidad microscópica en desarrollo. Colombia médica 2004; 35(1):34-39.
                3. Henríquez D, Leal A. Resultados del proyecto: “Impacto clínico y económico de la resistencia bacteriana en hospitales del distrito”. Boletín informativo grupo GREBO 2007: Disponible en http://grebo.org/grebo_site/jgrebo/documentos/Boletin%20Informativo%20No%20S1%202010.pdf
                4. Herrera M. El papel del biofilm en el proceso infeccioso y la resistencia. Nova 2004; 2:71-80.
                5. Costerton J, Stewart P, Greenberg E. Bacterial Biofilms: a common cause of persistent infection. Science 1999; 284:1318- 1322.
                6. Granger J. La placa dental como biofilm ¿cómo eliminarla? RCOE 2005; 10: 431-439.
                7. Heukelekian H, Heller A. Relation between food concentration and surface for bacterial growth. J Bacteriol 1940; 40:4 547-558.
                8. Costerton J, Geesey G and Cheng J. How Bacteria Stick. Scientific American 1978; 238 86-95
                9. Arciola C, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015; 5:7
                10. Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996; 20: 1083-1091.
                11. Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ. Identification of the Staphylococcus aureus SCRAMM clumping factor B (ClfB) binding site in the alpha C-domain of human fibrinogen. Microbiology 2008; 154:550-8.
                12. Ganesh VK, Barbu EM, Deivanayagam CC, et al. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 2011; 286:25963-72.
                13. Vengadesan K, Sthanam N. Structural biology of Gram- positive bacterial adhesins. Protein Sci. 2011; 20: 759-772.
                14. Dowd S, Sun Y, Secor P, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8 (1):43.
                15. Stoodley P, Sauser K, Davies D.G, and Costerton W. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002; 56: 187-209.
                16. Flemming H, Neu T and Wozniak D. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 007; 189: 7945-47.
                17. Rice K, Mann E, Endres J, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 2007;104:8113-18.
                18. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989 Aug;42(8):872-4.
                19. Christensen GD, Simpson W a., Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006.).
                20. Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G . Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol, 2003. 41(9): p. 4465-7.
                21. Méric G, Miragaia M, de Been M, et al. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biol Evol. 2015; 7(5):1313-
                22. Herman-Bausier P, Dufrêne YF. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol Microbiol. 2016 Feb;99(3):611-21.
                23. doi: 10.1111/mmi.13254
                24. Christensen GD, Bisno AL, Simpson WA, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to. Infect Immun, 1982: 37: 318-26.
                25. Vernachio JH, Bayer AS, Ames B, et al. Human Immunoglobulin G Recognizing Fibrinogen-Binding Surface Proteins Is Protective against both Staphylococcus aureus and Staphylococcus
                26. epidermidis Infections In Vivo. Antimicrob Agents Chemother. 2006; 50(2):511-518
                27. O’Connell D.P., Nanavathy,T., McDevitt,D., Gurusiddappa, S., Höök,M. and Foster,T.J. The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. J. Biol. Chem 1998; 273: 6821–6829.
                28. Geoghegan JA, Monk IR, O’Gara JP, Foster TJ. Subdomains N2N3 of Fibronectin Binding Protein A Mediate Staphylococcus aureus Biofilm Formation and Adherence to Fibrinogen Using Distinct Mechanisms. Journal of Bacteriology. 2013; 195(11):2675-2683.
                29. O’Neill E, Pozzi C, Houston P, et al. A Novel Staphylococcus aureus Biofilm Phenotype Mediated by the Fibronectin-Binding Proteins, FnBPA and FnBPB J Bacteriol. 2008;190(11):3835- 3850.
                30. Campoccia D, Montanaro L, Arciola C R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006; 27 (11): 2331-9.
                31. Pinilla, G., Muñoz, L., Navarrete, J., Castro, B., Chavarro, B., Avila, L. Transferencia de genes de resistencia en aislamientos clínicos de Staphylococcus spp: Integrones Clase I en ADN plasmídico y cromosomal. En: Memorias: Congreso Latinoamericano de Microbiología (XXI ALAM); Santos Brasil; 2012. p.66-67.
                32. Pinilla, G., Muñoz, L., Navarrete, J., Salazar L Diseño de Péptidos con actividad analoga al represor IcaR de Staphylococcus spp. formador de biopelícula, Revista Colombiana de Química.
                33. Universidad Nacional. Vol 44 No. 2 2015 pp. 5-9 El DOI asignado para este artículo es http://dx.doi.org/10.15446/rev.colomb.quim.v44n2.55213
                34. Muñoz, L., Salazar, LM:, Botero S., Navarrete J., Pinilla G. Possible antibiofilm effect of peptides derived IcaR repressor of Staphylococcus epidermidis Responsible for Hospital acquires
                35. sepsis. Advances in Computacional Biology. 2014, 232:91-95
                36. Pinilla, G., Muñoz, L., Navarrete, J., Chavarro, B., Salazar L. Molecular Characterization of Clinical Isolates of Staphylococcus spp. For Design of antibiofilm peptides as a possible alternative
                37. therapy. 2014 abstract 114th American Society of Microbiology en Boston Massachusetts. Disponible en: http://app.coreapps.com/tristar_asm2014/abstract/ff4e29439dd7a-
                38. dd90c3c98dff692
                39. Rojas J, Urrutia J. Formación de Biopelícula en Staphylococcus spp: caracterización fenotípica y genotípica [Tesis de pregrado]. Universidad Colegio Mayor de Cundinamarca. 2014
                40. Otto M. Staphylococcus epidermidis – the “accidental” pathogen. Nat Rev Microbiol. 2009; 7(8):555-567
                41. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol. 2015; 5:14
                42. Chavarro B, Pinilla G, Castro B, Yomayusa N, Moreno JE, Escobar JA, Vanegas N. Determinación de la presencia y transcripción de factores de virulencia en aislamientos colombianos de Staphylococcus aureus resistente a meticilina adquirido en la comunidad. Infectio. 2010;14(S1)80.
                43. Méric G, Miragaia M, de Been M, et al. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biol Evol. 2015; 7(5):1313-
                44. McCrea W, Hartford Orla, et al. The serine- aspartate (Sdr) protein family in Staphylococcus epidermidis. Microbiology. 2000; 146: 1535-1546.
                45. Davis S.L., Gurusiddappa,S., McCrea,K.W., Perkins,S. and Höök,M. SdrG, a fibrinogen-binding bacterial adhesin of the MSCRAMM subfamily of the Staphylococcus epidermis, targets the thrombin cleavage site in the β chain. J. Biol. Chem.2001, 276: 27799–27805.
                46. Savage VJ, Chopra I, O’Neill AJ. Staphylococcus aureus Biofilms Promote Horizontal Transfer of Antibiotic Resistance. Antimicrob Agents Chemother. 2013; 57(4):1968-1970.
                47. Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IA Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm. 2016; 513
                48. (1-2):697-708.
                49. Pedroso SH, Sandes SH, Luiz KC, Dias RS, Filho RA, Serufo JC, Farias LM, Carvalho MA, Bomfim MR, Santos SG. Biofilm and toxin profile: A phenotypic and genotypic characterization of coagulase-negative staphylococci isolated from human bloodstream infections. Microb Pathog.
                50. ;100:312-318. doi: 10.1016/j.micpath.2016.10.005.
                51. Desroche N, Dropet C, Janod P, Guzzo J. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care.2016; 25(10):577-584.
                52. Galvez, Z. Y. A. and V. E. M. Burbano. Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. NOVA Publicación en Ciencias Biomédicas. 2015; 12(22):
                53. -177.
                54. Corrales, L. C., et al. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. 2015; Nova 13(24): 55-82.
                55. Rodríguez, O. E., Andrade, W. A., Díaz, F. E., & Moncada, B. Actividad antimicrobiana de líquenes de la cuenca alta del rio Bogotá. 2015; Nova, 13(23).
                56. DOI: http://dx.doi.org/10.22490/24629448.1959
                Sistema OJS 3.4.0.5 - Metabiblioteca |