Skip to main navigation menu Skip to main content Skip to site footer

New physical and mathematical methodology to evaluate the morphology of normal erythrocyte

Nueva metodología geométrica para evaluar la morfología del eritrocito normal




Section
Artículo Original

How to Cite
Rodríguez, J., Escobar, S., Abder, L., Del Río, J., Quintero, L., & Ocampo, D. (2017). New physical and mathematical methodology to evaluate the morphology of normal erythrocyte. NOVA, 15(27), 37-43. https://doi.org/10.22490/24629448.1957

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Javier Rodríguez
    Santiago Escobar
      Lesly Abder
        Johnsen Del Río
          Luis Quintero
            David Ocampo

              Objective. Develop a new methodology to characterize the structure of the normal erythrocyte through the space occupied by the ring of the normal erythrocyte characterized by the method of Box Counting. Method. Images of 10 peripheral blood smears were analysed, whose erythrocytes were evaluated by an expert as normal. There were superimposed two Kp grids of 5 x 5 pixels and Kg of 10 x 10 pixels, to calculate the space occupied by two regions of the erythrocyte which are, disc and centre of this, seen of way frontal by the method of Box Counting. Results. The spaces occupied by the disc region with grid Kp varied between 47 and 56, the central region of the erythrocyte, varied between 9 and 14. The fractal dimension of these two regions varied between 0,941 and 1,115 for the disc, between 0.652 and 1,222 for the centre. Conclusions. The normal erythrocyte structure can be characterized by the space occupied by the regions erythrocyte from fractal geometry.

              Article visits 196 | PDF visits 100


              Downloads

              Download data is not yet available.
              1. REFERENCIAS
              2. Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 1967; 156: 636-38.
              3. Mandelbrot B. Árboles jerárquicos o de clasificación, y la dimensión. En: Los Objetos Fractales. Barcelona: Tusquets Eds S.A. 2000: 161-6.
              4. Mandelbrot B. The Fractal Geometry of Nature. San Francisco: Freeman Ed; 1972. p. 341-348.
              5. Peitgen H, Jürgens H, Saupe D. The Box-Counting Dimension En: Chaos and Chaos and Fractals: New Frontiers of Science. New York: Springer-Verlag. 1992. pp.
              6. Campuzano G. Utilidad clínica del extendido de sangre periférica: los eritrocitos. Medicina & Laboratorio. 2008; 14(7-8): 311-313. Disponible en: http://www.medigraphic.com/pdfs/
              7. medlab/myl-2008/myl087-8b.pdf.
              8. Alice Charwudzi, Edeghonghon E. Olayemi, Ivy Ekem, Olufunmilayo Olopade, Mariann Coyle, Amma Anima Benneh, Emmanuel Alote Allotey. A Preliminary Study of the Suitability
              9. of Archival Bone Marrow and Peripheral Blood Smears for Diagnosis of CML Using FISH. Adv Hematol. 2014; 2014: 604165.
              10. Pinzón R, Garavito G, Hata Y, Artega L, García J.D. Desarrollo de un sistema de análisis automático de imágenes de Extendido Sanguíneos. En Memorias del Congreso Español de
              11. la Sociedad de Ingeniería Biomédica; 2004. p.45-59.
              12. Rodríguez J, Correa C, Prieto S, Ospino B, Bernal P, Ortiz L, Munévar A. Caracterización geométrica de los glóbulos rojos. Diferenciación de muestras normales y patológicas. Rev.
              13. Cienc. Salud. 6 (3): 47-56.
              14. Correa C, Rodríguez J, Prieto S, Álvarez L, Ospino B, Munévar A, et al. Geometric diagnosis of erythrocyte morphophysiology. J. Med. Med. Sci. 2012; 3(11): 715-720.
              15. Rodríguez J. Prieto S, Correa S, Mejía M, Ospino B, Munevar Á, Amaya B, Duarte Y, Medina S, Felipe C. Simulación de estructuras eritrocitarias con base en la geometría fractal y euclidiana.
              16. Arch Med (Manizales) 2014, 14(2): 276-284.
              17. Monica Diez-Silva, Ming Dao, Jongyoon Han, Chwee-Teck Lim, Subra Suresh. Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull.
              18. May; 35(5): 382–388.
              19. Thurston Herricks,a Karl B. Seydel, Malcolm Molyneux, Terrie Taylor, and Pradipsinh K. Rathoda. Estimating Physical Splenic Filtration of Plasmodium falciparum Infected Red
              20. Blood Cells in Malaria Patients. Cell Microbiol. 2012 Dec; 14(12): 1880–1891.
              21. Zuk A, Targosz M, Szymonski M. Effect of selected drugs used in asthma treatment on morphology and elastic properties of red blood cells. Int J Nanomedicine. 2011; 6: 249–257.
              22. Xu D, Peng M, Zhang Z, Dong G, Zhang Y, Yu H. Study of damage to red blood cells exposed to different doses of γ-ray irradiation. Blood Transfus. 2012; 10(3): 321–330.
              23. Kuo CD, Bai JJ, Chien S. A fractal model for erythrocyte sedimentation. Biorheology. 1994; 1:77-89.
              24. Tang P, Greenwood J, Raper JA. A model to describe the settling behavior of fractal aggregates. J Colloid Interface Sci. 2002; 247(1):210-9.
              25. Rodriguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010; 10:1-6.
              26. Rodríguez J, Prieto S, Correa C, Bernal P, Álvarez L, Forero G, et al. Diagnóstico fractal del ventriculograma cardiaco izquierdo. Geometría fractal del ventriculograma durante la dinámica
              27. cardiaca. Rev Colomb Cardiol. 2012; 19(1):18-24.
              28. Velásquez J, Prieto S, Catalina C, Dominguez D, Cardona DM, Melo M. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. Journal of Cancer Research and Therapeutics 2015; 11(Issue 1): 98-104.
              29. Fernández A. Orden y Caos. Introducción. En: Ed. Prensa Científica S.A. España; 1990; p.4-8.
              30. Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC
              31. Medical Physics 2014, 14(2):1-9.
              32. Velásquez J, Prieto S, Catalina C, Dominguez D, Cardona DM, Melo M. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. Journal of Cancer Research and Therapeutics 2015; 11(Issue 1): 98-104.
              33. Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J. Med. Med. Sci. 2013; 4(8):370-381
              34. Rodríguez J. Nuevo diagnóstico físico y matemático de la monitoria fetal: predicción de aplicación clínica. Momento Revista de Física. 2012; 44: 49-65.
              35. Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J. Med.
              36. Med. Sci.2014; 5(5): 102-108.
              37. Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): Physical and mathematical mortality predictions on ICU. J. Med. Med. Sci. 2015; 6(8):209-220.
              38. Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27(3):211-8.
              39. Rodríguez J, Bernal P, Álvarez L, Pabón S, Ibáñez S, Chapuel N, et al. Predicción de unión de péptidos de MSP-1 y EBA- 140 de plasmodium falciparum al HLA clase II Probabilidad, combinatoria y entropía aplicadas a secuencias peptídicas. Inmunología. 2010; 29(3):91-99.
              40. Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. Predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología 2010; 29(1):7-19.
              41. Rodríguez J, Prieto S, Correa C, Forero M, Pérez C, Soracipa Y, et al. Teoría de conjuntos aplicada al recuento de linfocitos y leucocitos: predicción de linfocitos T CD4 de pacientes con
              42. VIH/SIDA. Inmunología. 2013; 32(2): 50-56.
              43. Rodríguez J, Prieto S, Correa C, Mora J, Bravo J, Soracipa Y, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Medical Physics. BMC
              44. Medical Physics. 2013; 13:3.
              45. Rodríguez Z, Veloza L, Baena del Valle J, Ramos R, Gómez C, Gómez D. Parámetros hematológicos de pacientes con fibrósis quística de la costa caribe colombiana: análisis y asociación con aislamiento de pseudomonas aerugisona. NOVA. 2009; (7) 11: 91 - 102.
              46. Páez, L. C. C., et al. Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis. 2015; Nova 13(23)
              47. DOI: http://dx.doi.org/10.22490/24629448.1957
              Sistema OJS 3.4.0.5 - Metabiblioteca |