Skip to main navigation menu Skip to main content Skip to site footer

Phenotypic characterization of the N2 strain of Caenorhabditis elegans as a model in neurodegenerative diseases

Caracterización fenotípica de la cepa N2 de Caenorhabditis elegans como un modelo en enfermedades neurodegenerativas




Section
Artículo Original

How to Cite
Parada Ferro, L. K., Gualteros Bustos, A. V., & Sánchez Mora, M. R. (2017). Phenotypic characterization of the N2 strain of Caenorhabditis elegans as a model in neurodegenerative diseases. NOVA, 15(28), 69-78. https://doi.org/10.22490/24629448.2080

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Laura Katerine Parada Ferro
    Andrea Viviana Gualteros Bustos
      Mélida Ruth Sánchez Mora

        The nematode C. elegans was established since 1960, thanks to the South African biologist Sydney Brenner, as a model organism in research. Their biological qualities allow to improve the vision and understanding of pathologies in human and other multicellular beings; In addition, its clear and observable phenotypes make it a suitable organism for the basic study of neurodegenerative, immunological diseases and carcinogenic processes. Objective. To analyze the phenotypic characteristics of the C. elegans N2 wild strain for later use as a screening model in the Biotechnology and Genetics Laboratory (Colegio Mayor de Cundinamarca University). Materials and Methods. The nematode was grown and grown in the NGM medium with the strain E. coli OP50. The N2 strain was synchronized to obtain eggs and later L1 larvae. The tests of longevity, reproduction, length and thermal stress were standardized. Results. The phenotypic characterization of the N2 strain of C. elegans presented a longevity of 16 to 22 days, an average reproduction of 225 offspring, the length of the nematode was 1100 ± 50 μm and the survival under thermal stress evaluated in the two Development stages of the nematode is greatly reduced at 37 ° C compared to 35 ° C; In addition, nematodes were more resistant to the first day of young adult compared to the sixth day of adulthood. Conclusions. The results of this study suggest that the phenotypic characteristics of the nematode analyzed are within the literature, so it is feasible to use it as a biological model in different trials as reported in other studies.

        Article visits 273 | PDF visits 185


        Downloads

        Download data is not yet available.
        1. REFERENCIAS
        2. Van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS genetics.
        3. ;4(3):e1000027.
        4. Locke C, Berry K, Kautu B, Lee K, Caldwell K, Caldwell G. Paradigms for pharmacological characterization of C. elegans synaptic transmission mutants. Journal of visualized experiments
        5. : JoVE. 2008(18).
        6. Qian H, Robertson AP, Powell-Coffman JA, Martin RJ. Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2008;22(9):3247-54.
        7. Daigle I, Li C. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proceedings of the National Academy of Sciences of the
        8. United States of America. 1993;90(24):12045-9.
        9. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(17):9980-5.
        10. Nass R, Hahn MK, Jessen T, McDonald PW, Carvelli L, Blakely RD. A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies
        11. dopamine transporter mutants impacting transporter biosynthesis and trafficking. Journal of neurochemistry. 2005;94(3):774-85.
        12. Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC. Identification of potential therapeutic drugs for huntington’s disease using Caenorhabditis elegans. PloS one. 2007;2(6):e504.
        13. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological sciences
        14. : an official journal of the Society of Toxicology. 2008;106(1):5-28.
        15. Dostal V, Link CD. Assaying beta-amyloid toxicity using a transgenic C. elegans model. Journal of visualized experiments : JoVE. 2010(44).
        16. Nass R, Miller DM, Blakely RD. C. elegans: a novel pharmacogenetic model to study Parkinson’s disease. Parkinsonism & related disorders. 2001;7(3):185-91.
        17. Berkowitz LA, Hamamichi S, Knight AL, Harrington AJ, Caldwell GA, Caldwell KA. Application of a C. elegans dopamine neuron degeneration assay for the validation of potential Parkinson’s disease genes. Journal of visualized experiments : JoVE. 2008(17).
        18. Wolozin B, Saha S, Guillily M, Ferree A, Riley M. Investigating convergent actions of genes linked to familial Parkinson’s disease. Neuro-degenerative diseases. 2008;5(3-4):182-5.
        19. Dexter PM, Caldwell KA, Caldwell GA. A predictable worm: application of Caenorhabditis elegans for mechanistic investigation of movement disorders. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2012;9(2):393-404.
        20. Bustos AVG, Jiménez MG, Mora RMS. The Annona muricata leaf ethanol extract affects mobility and reproduction in mutant strain NB327 Caenorhabditis elegans. Biochemistry and
        21. Biophysics Reports. 2017;10:282-6.
        22. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology. 1983;100(1):64-119.
        23. Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5(5):387-99.
        24. Dimitriadi M, Hart AC. Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiology of disease. 2010;40(1):4-11.
        25. Stiernagle T. Maintenance of C. elegans. University of Minnesota1999.
        26. Surco-Laos F, Cabello J, Gomez-Orte E, Gonzalez-Manzano S, Gonzalez-Paramas AM, Santos-Buelga C, et al. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food & function. 2011;2(8):445-56.
        27. Chávez Zobel AT, Sáenz Suárez H. Implicaciones de las proteínas de choque térmico (sHsp/HSPB) en el desarrollo de enfermedades degenerativas. Universitas Scientiarum.
        28. ;14(1):12.
        29. Zaidel-Bar R, Miller S, Kaminsky R, Broday L. Molting-specific downregulation of C. elegans body-wall muscle attachment sites: the role of RNF-5 E3 ligase. Biochemical and biophysical
        30. research communications. 2010;395(4):509-14.
        31. Nance J, Priess JR. Cell polarity and gastrulation in C. elegans. Development. 2002;129(2):387-97.
        32. Riddle DL, Blumenthal T, Meyer BJ. C. elegans II: Section II, Origins of the Model. Cold Spring Harbor (NY):. 2nd ed. Cold Spring Harbor Laboratory1997.
        33. Win MT, Yamamoto Y, Munesue S, Han D, Harada S, Yamamoto H. Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations. Aging and disease. 2013;4(4):178-85.
        34. Barriere A, Felix MA. Natural variation and population genetics of Caenorhabditis elegans. WormBook : the online review of C elegans biology. 2005:1-19.
        35. Morck C, Pilon M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC developmental biology. 2006;6:39.
        36. Laos FAS. Evaluación de la actividad de flavonoides y sus metabolitos en el organismo modelo Caenorhabditis elegans. Universidad de salamanca – facultad de farmacia; Departamento
        37. de Química Analítica, Nutrición y Bromatología. 2011. Epub 2011.
        38. Maman M, Carvalhal Marques F, Volovik Y, Dubnikov T, Bejerano- Sagie M, Cohen E. A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2013;33(14):6102-11.
        39. Verbeke P, Fonager J, Clark BF, Rattan SI. Heat shock response and ageing: mechanisms and applications. Cell biology international. 2001;25(9):845-57.
        40. Sengupta P, Samuel AD. Caenorhabditis elegans: a model system for systems neuroscience. Current opinion in neurobiology. 2009;19(6):637-43.
        41. Flórez, R. A. N. Avances y perspectivas en Síndrome de Asperger. 2014; Nova, 12(21).
        42. DOI: http://dx.doi.org/10.22490/24629448.2080
        Sistema OJS 3.4.0.5 - Metabiblioteca |