Skip to main navigation menu Skip to main content Skip to site footer

Microbial immobilization on synthetic polymers for wastewater treatment

Inmovilización microbiana en polímeros sintéticos para el tratamiento de aguas residuales




Section
Artículo Original Producto de Investigación

How to Cite
Microbial immobilization on synthetic polymers for wastewater treatment. (2016). NOVA, 14(26), 99-106. https://doi.org/10.22490/24629448.1755

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Wilmar Alirio Botello Suárez
    Juan Camilo Ortiz Varón
      Sergio Andrés Peña Perea

        Objective. Evaluate the ability of microbial immobilization of several synthetic polymers, and establish its performance during the start-up and operation of a hybrid biological reactor (HBR), applied to domestic wastewater treatment. Methods. For evaluation we selected five polymers: polyethylene terephthalate (PET), polybutadiene (BD), polyurethane foam (PUF), expanded polystyrene (EPS) and polyethylene (PE). Materials with higher immobilization capacity (expressed as the number of colony forming units contained in one gram of material, CFUg -1 ) were added to a HBR, with operational volume of 10,4L, fed with synthetic wastewater. The efficiency of the system was established in terms of removal of organic matter contained in the effluent for 13 days of continuous operation. Results. Polymers showing the high immobilization capacity were: BD (2,2x107 CFUg -1) and PUF (4,6x107CFUg-1). The HBR, subjected to organic loading rate of 2.7 kg COD m -3 d -1, showed operational stability for the treatments evaluated, reaching a removal of organic matter of 78% and 94%, by using BD and PUF as immobilization supports, respectively.

        Article visits 389 | PDF visits 166


        Downloads

        Download data is not yet available.
        1. Liu Y-Q, Moy BY-P, Tay J-H. COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors. Enzyme Microb Technol. 2007;42(1):23–8.
        2. Ahn Y-H. Sustainable nitrogen elimination biotechnologies: A review. Process Biochem. 2006;41(8):1709–21.
        3. Chan YJ, Chong MF, Law CL, Hassell DG. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem Eng J. 2009;155(1-2):1–18.
        4. Jianlong W, Hanchang S, Yi Q. Wastewater treatment in a hybrid biological reactor (HBR): Effect of organic loading rates. Process Biochem. 2000;36(4):297–303.
        5. Kariminiaae-Hamedaani H-R, Kanda K, Kato F. Wastewater treatment with bacteria immobilized onto a ceramic carrier in an aerated system. J Biosci Bioeng. 2003;95(2):128–32.
        6. Silva AJ, Hirasawa JS, Varesche MB, Foresti E, Zaiat M. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe. 2006;12(2):93–8.
        7. Kourkoutas Y, Bekatorou A, Banat I., Marchant R, Koutinas A. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 2004 Aug;21(4):377–97.
        8. Leenen EJTM, Dos Santos VAP, Grolle KCF, Tramper J, Wijffels R. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Res. 1996;30(12):2985–96.
        9. Dong Z, Lu M, Huang W, Xu X. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J Hazard Mater. 2011;196:123–30.
        10. Osorio F, Hontoria E. Wastewater treatment with a doublelayer submerged biological aerated filter, using waste materials as biofilm support. J Environ Manage. 2002;65(1):79–84.
        11. Chernicharo CA de L. Anaerobic Reactors. Aptara, editor. London: IWA; 2007. 188 p.
        12. Guo W, Ngo H-H, Dharmawan F, Palmer CG. Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresour Technol. 2010;101(5):1435–9.
        13. An T, Zhou L, Li G, Fu J, Sheng G. Recent Patents on Immobilized Microorganism Technology and Its Engineering Application in Wastewater Treatment. Recent Patents Eng.
        14. ;2(1):28–35.
        15. Botello Suárez WA, Puerto D, Montes D, Rodas EF. Detección y evaluación del potencial nitrificante de aislados bacterianos asociados a la rizósfera de tres especies de macrófitas. Rev Colomb Cienc Anim. 2014;6(2):414–23.
        16. APHA, Awwa, WEF. Standard methods for the examination of water and wastewater. 21th ed. Association APH, Association AWW, Water Environment Federation, editors. Washington, DC: American Public Health Association; 2005.
        17. Kim D, Kim K-Y, Ryu H-D, Min K-K, Lee S-I. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresour Technol. 2009;100(13):3180–4.
        18. Tan C, Ma F, Li A, Qiu S, Li J. Evaluating the Effect of Dissolved Oxygen on Simultaneous Nitrification and Denitrification in Polyurethane Foam Contact Oxidation Reactors. Water Environ Res. 2013;85(3):195–202.
        19. Prabhavathi P, Rajendran R, Karthiksundaram S, Pattabi S, Dinesh Kumar S, Santhanam P. Enhanced bioremediation efficiency of denim industrial effluent using bacterial biofilm onto polyurethane matrix (review). Appl Biochem Microbiol. 2014;50(6):554–62.
        20. Chu L, Wang J. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere. 2011;83(1):63–8.
        21. De Navia SLÁ, Torres SME. Calidad sanitaria del agua del Parque Natural Chicaque. Nova. 2013;11(20).
        22. Ramírez LCC, Arévalo GZY, Moreno BVE. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova. 2014; 12(21).
        23. Galvez ZYA, Burbano VEM. Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. NOVA Publicación en Ciencias Biomédicas. 2015;12(22):165-77.
        24. Ramírez LCC, Leal LCS, Rodríguez FAE. Determinación de la presencia de bacterias patógenas para el humano en aguas de riego en la cuenca alta de la sabana de Bogotá; DC Colombia.
        25. Nova. 2014;12(22).
        26. ==========================================
        27. DOI: http://dx.doi.org/10.22490/24629448.1755
        Sistema OJS 3.4.0.5 - Metabiblioteca |