Skip to main navigation menu Skip to main content Skip to site footer

Technologies for water saving in rice

Tecnologías para ahorrar agua en el cultivo de arroz




Section
Articulo de Revisión

How to Cite
Technologies for water saving in rice. (2016). NOVA, 14(26), 67-82. https://doi.org/10.22490/24629448.1757

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Mauricio González B
    Ana Milena Alonso

      Water use efficiency, given that it conditions the sown areas, yield and production costs, as well as its sustainability, determines the future of rice production in Colombia against the FDA. This paper presents a review of the globally developed technologies for water saving in rice production under aerobic and anaerobic conditions. The authors highlight alternative technologies that surpass the conventional system in terms of yield and harvest per cubic meter of water used. In the reflection for Colombia, the authors highlight important features for the research agenda and the social appropriation of alternative technologies with a view to optimizing water resources usage for rice production. Recommendations include the prioritizing of aerobic rice and the effective measurement of water consumption, which is indispensable for its use, and for planning, directing, and understanding how these alternative technologies can lead to the recovery of the investment made by agricultural workers and crop profitability.

      Article visits 355 | PDF visits 235


      Downloads

      Download data is not yet available.
      1. Kato Y, Katsura K. Rice adaptation to aerobic soils: physiological considerations and implications for agronomy. Plant Production Sc. 2014; 17(1): 1-12.
      2. Barona E. Importancia de la semilla de arroz. Arroz. 2010; 58(489): 15-21.
      3. Liu M, Lin S, Dannenmann M, Tao Y, Saiz G, Zuo, K, et al. Do water-saving ground cover rice production systems increase grainyields at regional scales?. Field crops re. 2013 Jul; 150: 19-28.
      4. González M., Saldarriaga G, Jaramillo O. Estimación de la demanda de agua: Conceptualización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional del Agua, Capítulo 5. IDEAM, Colombia; 2010.
      5. Cortés B. C. Uso del modelo aquacrop para estimar rendimientos para el cultivo de arroz en los departamentos de Tolima y Meta. Informe del proyecto de cooperación técnica TCP/COL/3302.FAO; 2013.
      6. CORTOLIMA. Plan de Gestión Ambiental Regional-PGAR 2013-2023. Corporación Autónoma Regional del Tolima; 2013.
      7. Salive A, Riobueno C, Castilla L. Mejoramiento del sistema de manejo de riego en arroz. Arroz. 2004; 52 (452): 32 – 41.
      8. FEDEARROZ. Área, producción y rendimientos. [Internet]; 2015 [acceso 15 nov 2015]. Disponible en: http://www. fedearroz.com.co/new/apr_public.php
      9. FAOSTAT data. Agriculture and Food Trade. [acceso 08 de oct 2015]. Disponible en: http://faostat 3.fao.org/home/index.
      10. html.
      11. FEDEARROZ. “Manejo integrado del cultivo de arroz”. Fondo Nacional del Arroz. Produmedios. Colombia; 2004.
      12. Acosta, J. Evaluación del sistema intensivo de cultivo arrocero en el municipio de Purificación Tolima [Tesis pregrado]. Colombia, U. de Cundinamarca; 2011.
      13. Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation of rice in the water-saving ground cover rice production system. Field Crops Re. 2006; 95:1-12.
      14. Tao Y, Zhang Y, Jin X, Saiz G, Jing R, Guo L. More rice with less water-evaluation of yield and resource use efficiency in ground cover rice production system with transplanting. European J. of Agronomy. 2015; 68: 13-21.
      15. Lampayan R, Samoy K, Sibayan E, Ella B, Jayag P, et al. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon, Philippines. Paddy and Water Environment. 2015; 13(3): 215-227.
      16. Lampayan R, Bouman B. Management strategies for saving water and increase its productivity in lowland rice-based ecosystems. SUMAPOL, Hangzhou, Zhejiang Province, China; 2005.
      17. Martín Y, Soto F, Rodríguez YE, Morejón R. El sistema intensivo de cultivo del arroz (SICA) disminuye la cantidad de semillas para la siembra, aumenta los rendimientos agrícolas y ahorra el agua de riego. C. Tropicales. 2010; 31 (1):70-73.
      18. Guerra H, Chinea E, Vidal R, Hernández N, Moreno G. Determinación de los consumos de agua en condiciones de producción, en el sistema arrocero Jesús Suárez Gayol del CAI arrocero Ruta Invasora. [acceso 15 Nov 2015]. Disponible
      19. en: http://www.cubasolar.cu/biblioteca/ecosolar/Ecosolar47/ HTML/articulo04N.htm
      20. Maqueira L, Torres W, Díaz G, Torres K. Efecto del sistema intensivo del cultivo arrocero sobre algunas variables del crecimiento y el rendimiento en una variedad de ciclo corto. C. Tropicales. 2007; 28(2): 59-61.
      21. Pineda. D. Aplicación de la tecnología para manejo eficiente de agua para riego. Arroz. 2010; 58 (485): 22-32.
      22. Nyamai M; Mati B, Home P, Odongo B, Wanjogu R, Thuranira EG. Improving land and water productivity in basin rice cultivation in Kenya through System of Rice Intensification (SRI). Agric Eng Int: CIGR Journal. 2012 May; 14(2): 1-13.
      23. Rajeshwar M, Aariff M. Comparison of System of Rice Intensification (SRI) and conventional method of rice planting under nagarjuna sagar project left canal command área of Andhra Pradesh, India. J. of Soil Science. 2008; 3(1): 53-57.
      24. Thakur A, Rath S, Patil D, Kumar A. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environment. 2011; 9:13–24
      25. Veeraputhiranl R, Balasubramanian R, Pandian B, Chelladurai M, Tamilselvi R, Renganathan VG. Influence of system of rice intensification on yield, water use and economics through farmers participatory approach. Madras Agric. J. 2012 Jun; 99(4-6): 251-254.
      26. Satyanarayana A, Thiyagarajan T. Opportunities for water saving with higher yield from the system of rice intensification. Irrigation Sci. 2007; 25:99–115.
      27. Gopalakrishnan S, Kumar R, Humayun P, Srinivas V, Kumari BR, Vijayabharathi R, et al. Assessment of different methods of rice cultivation affecting growth parameters, soil chemical, biological, and microbiological properties, water saving, and grain yield in rice–rice system. Paddy Water Environment. 2014; 12:79–87.
      28. Manjunatha B, Basavarajappa R, Pujari B. Effect of age of seedlings on growth, yield and water requirement by different system of rice intensification. Karnataka J. Agric. Sci. 2010; 23 (2): 231-234.
      29. Naik BB, Reddy DR, Sreenivas G, Rani PL. Yield and Water Productivity of Aerobic Rice (Oryza sativa L.) as Influenced by Dates of Sowing and Varieties during kharif season. Journal of Rice Research. 2015; 8(1): 52-56.
      30. Kadiyala M, Mylavarapu R, Li Y, Reddy G, Reddy M. Impact of aerobic rice cultivation on growth, yield, and water productivity of rice–maize rotation in semiarid tropics. Agronomy J. 2012; 104(6).
      31. Bouman B, Peng S, Castañeda A, Visperas R. Yield and water use of irrigated tropical aerobic rice systems. Agric. water management. 2005; 74: 87-105.
      32. Crusciol C, Arf O, Soratto R, Machado J. Extração de macronutrientes pelo arroz de terras altas sob diferentes níveis de irrigação por asperazo e de adubação. R. Brasilera Agrociência.
      33. ; 9: 145-150.
      34. Avasthe R, Verma S, Kumar A, Rahman H. Performance of rice (Oryza sativa) varieties at different spacing under system of rice intensification (SRI) in mid hill acid soils of Sikkim Himalayas. Indian J. of Agronomy. 2012; 57:32-37.
      35. Suryavanshi P, Singh Y, Prasanna R, Bhatia A, Shivay Y. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environment. 2013; 11:321–329.
      36. Hameed K, Mosa K, Jaber, F. Irrigation water reduction using system of rice intensification compared with conventional cultivation methods in Iraq. Paddy and Water Environment. 2011; 9: 121-127.
      37. Zhao L, Wu L, Li Y, Lu X, Zhu D, Uphoff, N. Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Expl Agric. 2009; 45: 275–286
      38. Zhao L, Wu L, Li Y, Animesh S, Zhu D, Uphoff N.
      39. Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification. C. in soil science and plant analysis. 2010; 41:1–12.
      40. Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field crops research. 2012; 126: 16-22.
      41. Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Re. 2013; (144): 212–224
      42. Liu L, Chen T, Wang Z, Zhang H, Yang J, Zhang J, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field crops re. 2013; 154:226-235.
      43. Cabangon R, Tuong T, Castillo E, Bao L, Lu G, Wang G, et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Rice Field Water Environ. 2004; 2:195-206.
      44. Rehman H, Kamran M, Basra S, Afzal I, Farooq M. Influence of seed priming on performance and water productivity of direct seeded rice in alternating wetting and drying. Rice Science. 2015; 22(4): 189−196.
      45. Matsuo N, Mochizuki T. Growth and yield of six rice cultivars under three water-saving cultivations. Plant Prod. Sci. 2009; 12: 514-525.
      46. Katsura K, Nakaide Y. Factors that determine grain weight in rice under high-yielding aerobic culture: the importance of husk size. Field Crops Res. 2011; 123: 266-272.
      47. Okami M, Kato Y, Yamagishi J. Grain yield and leaf area growth of direct–seeded rice on flooded and aerobic soils in Japan. Plant Prod. Sci. 2013, 16: 276-279.
      48. Kato Y, Okami M, Katsura K. Yield potential and water use efficency of aerobic rice in Japan. Field crops research. 2009; 113: 328-334.
      49. Spanu A, Murtas A. Water use and crop coefficients in sprinkler irrigated rice. Ital. J. Agron. / Riv. Agron. 2009; 2:47-58
      50. Blanco A. Agronomía del cultivo del arroz en riego por aspersión: variedades, riego, fertilización y control de malas hierbas [Tesis doctoral]. España, U. de Lleida; 2014.
      51. Huaqi W, Bouman BAM, Zhao D, Changgui W, Moya PF. Aerobic rice in northern China: opportunities and challenges. En: Water-wise rice production. Proceedings of the International Workshop on Water-Wise Rice Production. (Eds. Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Tuong TP, Ladha JK). Los Baños, Philippines. Los Baños (Philippines): International Rice Research Institute; 2002.
      52. Chan C, Zainudin H, Saad A, Azmi M. Productive water use in aerobic rice cultivation. J. Trop. Agric and Fd. 2012; 49(1): 117–126
      53. Stevens G, Vories E, Heiser J, Rhine M. Experimentation on cultivation of rice irrigated with a center pivot system. In T.S. Lee ed., Irrigation systems and practices in challenging environments. InTech. 2012: 233-254.
      54. Vories E, Stevens W, Tacker P, Griffin T, Counce P. Rice production with center pivot irrigation. Applied engineering in agriculture. 2013; 29(1): 51-60.
      55. Vories ED, Tacker PR, Hogan R. Multiple-inlet approach to reduce water requirements for rice production. Am. Soc. Agric. Eng. 2005; 21: 611–616.
      56. Smith MC. Water use estimates for various rice production systems in Mississippi and Arkansas. Irrig. Sci. 2007; 25:141–147.
      57. Massey J, Walker T, Anders M, Smith M, Avila LA. Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi. Agricultural Water Management. 2014; 146: 297–304.
      58. Bandeira S. y Böcking B. Riego de arroz por mangas; 2015 [citado 15 Nov 2015]. Disponible en: http://www. acpaarrozcorrientes.org.ar/Informacion_de_Interes/Riego_ de_Arroz_por_Mangas_2014.pdf
      59. Avila L, Martini L, Mezzomo R, Refatti JP, Campos R, Cezimbra DM, et al. Rice water use efficiency and yield under continuous and intermittent Irrigation. J. of Agron. 2015; 107:442–448.
      60. Adusumilli R, Laxmi, S. Potential of the system of rice intensification for systemic improvement in rice production and water use: the case of Andhra Pradesh. Paddy Water Environment. 2011; 9:89–97.
      61. Krishna A, Biradarpatil N, Channappagoudar B. Influence of system of rice intensification cultivation on seed yield and quality. Karnataka J. Agric. Sci. 2008; 21(3):369-372.
      62. Turmel M, Espinosa J, Franco L, Pérez C, Hernández H, González E, et al. On-farm evaluation of a low-input rice production system in Panama. Paddy Water Environment. 2011; 9:155–161.
      63. Gehring C, Gomes E, Boddey R. System of rice intensification (SRI) in southeastern lowlands of Amazonia a viable alternative for smallholder irrigated rice production?; 2008 [citado 12 Jul 2015]. Disponible en: http://www.tropentag.de/2008/ abstracts/full/40.pdf.
      64. Chang J. Breve reseña del Sistema Intensificado del Cultivo de Arroz SICA primera validación para pequeños productores en Ecuador; 2008 [citado 15 Jul 2015]. Disponible en:
      65. http://sri.ciifad.cornell.edu/countries/ecuador/EcuGilLibroCultivodiArroz08.pdf.
      66. Tsujimoto Y, Horie T, Randriamihary H, Shiraiwa T, Homma k. Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agric Syst. 2009; 100: 61–71
      67. Barison J, Uphoff N. Rice yield and its relation to root growth and nutrient-use efficiency under SRI and conventional cultivation: an evaluation in Madagascar. Paddy Water Environment. 2011; 9:65–78.
      68. Uphoff N, Randriamiharisoa R. Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification. In: Bouman BAM, et al. (Eds.), P. WaterWise Rice Production: 8– 11 April 2002, IRRI, Los Banos, Philippines; 2002. p. 356.
      69. Ceesay M. An opportunity for increasing factor productivity for rice cultivation in The Gambia through SRI. Paddy Water Environ. 2013; 9:129–135.
      70. Styger E, Attaher M, Guindo H, Ibrahim H, Diaty M, Abba, I, et al. Application of system of rice intensification practices in the arid environment of the Timbuktu region in Mali. Paddy Water Environment. 2011; 9:137–144.
      71. Mati B, Wanjogu R, Odongo B. Introduction of the System of Rice Intensification in Kenya: experiences from Mwea Irrigation Scheme. Paddy Water Environ. 2011; 9:145–154.
      72. Ndiiri J, Mati B, Home P, Odongo B, Uphoff N. Comparison of water savings of paddy rice under System of Rice Intensification (SRI) growing rice in Mwea, Kenya. J of Current Research and Review. 2012; 4(6): 63-73.
      73. Ly P, Stoumann L, Bech T, Rutz D, de Neergaard A. The system of rice intensification: Adapted practices, reported outcomes and their relevance in Cambodia. Agricultural Systems. 2012; 113: 16–27.
      74. Evans C, Justice S, Shrestha S. Experience with the system of rice intensification in Nepal. Cornell I; 2002. [citado 12 Nov 2015]. Disponible en: http://ciifad.cornell.edu/sri; 607-2550831; ciifad@cornell.edu.
      75. Latif M, Islam M, Ali M, Saleque M. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Re. 2005; 93: 281–292.
      76. Thomas V, Ramzi A. SRI contributions to rice production dealing with water management constraints in northeastern Afghanistan. Paddy Water Environment. 2011; 9:101–109.
      77. Hameed K, Jaber F, Hadi A, Elewi H, Uphoff N. Influence of system of rice intensification (SRI) methods on productivity and yield components of jasmine rice variety in Al-Muthanna province, Iraq season 2008; 2008 [citado 20 Nov 2015]. Disponible en: http://sri.ciifad.cornell.edu/countries/iraq/ IraqAlMuthanna_JasmineRiceExper08.pdf.
      78. Chapagain T, Riseman A, Yamaji E. Assessment of system of rice intensification (SRI) and conventional practices under organic and inorganic management in Japan. Rice Science. 2011; 18(4): 311−320.
      79. Noltze M, Schwarze S, Qaim M. Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste.
      80. Ecological Economics. 2013; 85: 59–68.
      81. Nissanka S, Bandara T. Comparison of productivity of system of rice intensification and conventional rice farming systems in the dry-zone region of Sri Lanka. Fourth I. Crop Sci. Congress, Queensland, Australia. 2004: 1177.
      82. Shengfu A, Xiehui W, Zhongjiong X, Shixiu X, Chenquan L, Yangchang L. Assessment of using SRI with the super hybrid rice variety Liangyoupei. Uphoff, et al. (Eds.), Assessments of the System of Rice Intensification (SRI): Proceedings of CIIFAD, Sanya, China, Ithaca, NY, USA; 2002. pp. 112–1115.
      83. Sheehy J, Penga S, Dobermann A, Mitchell P, Ferrer A, Yang J, et al. Fantastic yields in the system of rice intensification: fact or fallacy?. Field Crops Re. 2004; 88: 1–8.
      84. Qingquan, Y. The system of rice intensification and its use with hybrid rice varieties in China. In: Uphoff, et al. (Eds.), Assessments of the System of Rice Intensification (SRI): Proceedings of an International Conference, Sanya, China, CIIFAD, Ithaca, NY, USA; 2002. pp. 109–111.
      85. Hasan M, Sato S. Water saving for paddy cultivation under the system of rice intensification in eastern Indonesia. J. Tanah Lingk. 2007; 9 (2):57-62
      86. Markarim A, Balasubramanian V, Zaini Z, Syamsiah I, Diratmadja I, Arafah H, et al. System of rice intensification (SRI): evaluation of seedling age and selected components. In: Bouman, B.A.M., et al. (Eds.), P. Water-Wise Rice Production: IRRI, Los Banos, Philippines; 2002. p. 356.
      87. Rickman, J.F. Preliminary results: rice production and the system of rice intensification; 2004. [citado 25 Nov 2015]. Disponible en: http://ciifad.cornell.edu/sri/countries/philippines/irrieval.pdf.
      88. Cuevas M A. Perdidas por escorrentía en suelos arroceros del distrito de riego del rio Zulia. Arroz. 2012; 60 (501).
      89. Perez C. Los politubos alternativa para el manejo de agua en cultivo de arroz en Colombia. Arroz. 2015; 63(515): 33 -39.
      90. Cuevas M, Ovalle P. Evaluación de hidro-retenedores de humedad en suelos arroceros, en el distrito de riego del Rio Zuila. Arroz. 2004; 52 (450): 4-10.
      91. Cuevas M A. Tiempo de suministro del riego sobre la eficiencia de la fertilización nitrogenada y la velocidad de nitrificación de la úrea en el desarrollo de fedearroz 2000. Arroz. 2014; 62(511): 36-42.
      92. Elphick S, Baicich P, Parsons K, Fasola M, Mugica L. The future for research on waterbirds in rice fields. Waterbird. 2010; 33: 231-243.
      93. Acosta M, Mugica L, Blanco D, Bernabé L, Antunes R, et al. Birds of rice fields in the Americas. Waterbirds. 2010; 33(1): 105-122.
      94. Cifuentes S, Suarez J, Castillo L. Manejo integrado de plagas en cultivos de arroz: una práctica amigable con el ambiente; 2012. [citado 22 Jul 2015]. Asociación Calidris. Disponible en: http://calidris.org.co/?p=2149.
      95. Asase A, Tetteh DA. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. En: Agroforest system. 2010; 79:335-368.
      96. Alam A, Khalequzzaman K, Anam M, Islam N, Rahman G. Effect of tree rice associations and orientations on the incidence of major diseases of rice. J of biological sc. 2002; 2(7): 492-493.
      97. Parviz K.y Altieri M. Un Legado para el Futuro, Sistemas Ingeniosos del Patrimonio Agricola Mundial. ONU, Roma; 2011.
      98. Perez R. Producción ecológica de arroz con peces
      99. “Rizipiscicultura”. Arroz. 2005; 53(458): 13 – 20.
      100. Jaramillo S, Pulver E, Moreira S. Transformación de una agricultura de secano a riego a través de la cosecha de agua en Costa Rica, México, Nicaragua. XII C. I. do arroz para America Latina e Caribe. Porto alegre, Brasil; 2015.
      101. Decreto 155 de 2004, por el cual se reglamenta el artículo 43 de la Ley 99 de 1993 sobre tasas por utilización de aguas y se adoptan otras disposiciones. Ministerio de Ambiente. Diario Oficial No. 45.439 (enero 23 de 2004).
      102. CORNARE. Informe Tasas por Utilización del Recurso Hídrico. El Santuario Antioquia; 2013 [citado 12 Jul 2015]. Disponible en: http://200.30.82.162/instrumentoseconomicos/tasa-por-uso/Informes/Tasas-por-Uso-2013.pdf
      103. Urrutia, N. Sustainable management after irrigation system transfer. Experiences in Colombia. [Phd thesis]. Netherlands, Delft; 2006.
      104. Corrales LC, Romero DMA, Macías JAB, Vargas AMC. Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015;13(24):55-82.
      105. ============================================
      106. DOI: http://dx.doi.org/10.22490/24629448.1757
      Sistema OJS 3.4.0.5 - Metabiblioteca |