Pathogenicity in vitro and in semi-field tests of Trichoderma asperellum (Strain VA22) on Aedes (Stegomyia) aegypti (Linnaeus, 1762),in Virginia (Risaralda- Colombia)
“Patogenicidad in vitro y en pruebas de semi-campo de Trichoderma asperellum (CepaVA22) sobre Aedes aegypti en la Virginia (Risaralda- Colombia)”.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.
Furthermore, the authors keep their property intellectual rights over the articles.
Show authors biography
Introduction. Aedes aegypti, originally from Africa, has spread globally and is the main vector of dengue in Colombia. The repeated use of insecticides has generated resistan- ce in these mosquitoes, prompting the search for complementary strategies.Objective. This study aimed to evaluate the potential of the fungus Trichoderma asperellum, isolated from the municipality of La Virginia (Risaralda, Colombia), as a biocontrol agent for Ae. aegypti.Methodology. In vitro bioassays were conducted with larvae exposed to a concen- tration of 1x10^8 conidia/mL of the fungus, observing mortality at 24, 48, and 72 hours. Semi-field trials were carried out in the same region, using a concentration of 1x10^7 conidia/mL in containers with Aedes larvae from the area, evaluating larval mortality at 48 hours. To analyze the difference between treated and untreated groups, the Wilcoxon test (P=0.05) was applied using the R program version 4.4.0 (https://www.r-project. org/). Results. T. asperellum showed high pathogenicity, causing 95% and 99% mortality in the in vitro and semi-field tests, respectively. Conclusion. This is the first report of this species infecting immature stages of Ae. aeg ypti in our country. These results suggest that it could be used in Colombia as an alternative to traditional control methods.
Article visits 12 | PDF visits 9
Downloads
- Laporta GZ, Potter AM, Oliveira JFA, et al. Global Distribution of Aedes aegypti and
- Aedes albopictus in a Climate Change Scenario of Regional Rivalry. Insects; 14. Epub
- ahead of print 1 January 2023. DOI: 10.3390/insects14010049.
- Ruiz-López F, González-Mazo A, Vélez-Mira A, et al. Presencia de Aedes (Stegomyia)
- aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no
- registradas para Colombia. Biomedica 2016; 36: 303–308.
- Castrillón JC, Castaño JC, Urcuqui S. Dengue en Colombia: diez años de evolución.
- Revista chilena de infectología 2015; 32: 142–149.
- Bliman PA. A feedback control perspective on biological control of dengue vectors by
- Wolbachia infection. Eur J Control; 59. Epub ahead of print 2021. DOI:
- 1016/j.ejcon.2020.09.006.
- Rodrigues-Alves ML, Melo-Júnior OA de O, Silveira P, et al. Historical Perspective and
- Biotechnological Trends to Block Arboviruses Transmission by Controlling Aedes
- aegypti Mosquitos Using Different Approaches. Frontiers in Medicine; 7. Epub ahead
- of print 2020. DOI: 10.3389/fmed.2020.00275.
- Silveira A, Andrade J, Guissoni A, et al. Larvicidal potential of cell wall degrading
- enzymes from Trichoderma asperellum against Aedes aegypti (Diptera: Culicidae).
- Biotechnol Prog; 37.
- Podder D, Ghosh SK. A new application of Trichoderma asperellum as an anopheline
- larvicide for eco friendly management in medical science. Sci Rep; 9. Epub ahead of
- print 1 December 2019. DOI: 10.1038/s41598-018-37108-2.
- Cisneros-Vázquez LA, Penilla-Navarro RP, Rodríguez AD, et al. Entomopathogenic
- fungi for the control of larvae and adults of Aedes aegypti in Mexico. Salud Publica
- Mex 2023; 65: 144–150.
- Domsch KH, GW and ATH. Compendium of Soil Fungi. London: IHW-Verlag, 1993.
- Miranda E, Sandoval L. Desarrollo de un método rápido y sencillo para el
- aislamiento de DNA de especies fúngicas que afectan el arroz y el tabaco.
- Fitosanidad. marzo de 2000;4(1-2):107-8.
- Puntener W. Manual for Field Trials in Plant Protection. Basle, Switzerland : Ciba-
- Geigy Limited, 1981.
- Monte E. The sophisticated evolution of Trichoderma to control insect pests.
- Proceedings of the National Academy of Sciences of the United States of America; 120.
- Epub ahead of print 2023. DOI: 10.1073/pnas.2301971120.
- Foresman D, Tartar A. The transcriptome of the entomopathogenic fungus
- Culicinomyces clavisporus contains an ortholog of the insecticidal ribotoxin Hirsutellin.
- PeerJ; 11. Epub ahead of print 2023. DOI: 10.7717/peerj.16259.
- Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal
- immunity. Insect Biochem Mol Biol; 111. Epub ahead of print 1 August 2019. DOI:
- 1016/j.ibmb.2019.103182.
- Shen D, Nyawira KT, Xia A. New discoveries and applications of mosquito fungal
- pathogens. Current Opinion in Insect Science 2020; 40: 111–116.
- Sundaravadivelan C, Padmanabhan MN. Effect of mycosynthesized silver nanoparticles
- from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes
- aegypti L. Environmental Science and Pollution Research 2014; 21: 4624–4633.
- Mehmood N, Hassan A, Zhong X, et al. Entomopathogenic fungal infection following
- immune gene silencing decreased behavioral and physiological fitness in Aedes aegypti
- mosquitoes. Pestic Biochem Physiol; 195. Epub ahead of print 2023. DOI:
- 1016/j.pestbp.2023.105535.
- Sweeney AW. The time-mortality response of mosquito larvae infected with the fungus
- Culicinomyces. J Invertebr Pathol; 42. Epub ahead of print 1983. DOI: 10.1016/0022-
- (83)90058-7.