Skip to main navigation menu Skip to main content Skip to site footer

Pathogenicity in vitro and in semi-field tests of Trichoderma asperellum (Strain VA22) on Aedes (Stegomyia) aegypti (Linnaeus, 1762),in Virginia (Risaralda- Colombia)

“Patogenicidad in vitro y en pruebas de semi-campo de Trichoderma asperellum (CepaVA22) sobre Aedes aegypti en la Virginia (Risaralda- Colombia)”.




Section
Artículo Original

How to Cite
Cardona B, N. L. ., Lizeth Carolina Salgado, Juan Diego Medina, Dairon Andrés Machado-Agudelo, Wilber Gómez -Vargas, & Adalucy Alvarez Aldana. (2024). Pathogenicity in vitro and in semi-field tests of Trichoderma asperellum (Strain VA22) on Aedes (Stegomyia) aegypti (Linnaeus, 1762),in Virginia (Risaralda- Colombia). NOVA, 23(43). https://doi.org/10.22490/24629448.8558

Dimensions
PlumX
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Introduction. Aedes aegypti, originally from Africa, has spread globally and is the main vector of dengue in Colombia. The repeated use of insecticides has generated resistan- ce in these mosquitoes, prompting the search for complementary strategies.Objective. This study aimed to evaluate the potential of the fungus Trichoderma asperellum, isolated from the municipality of La Virginia (Risaralda, Colombia), as a biocontrol agent for Ae. aegypti.Methodology. In vitro bioassays were conducted with larvae exposed to a concen- tration of 1x10^8 conidia/mL of the fungus, observing mortality at 24, 48, and 72 hours. Semi-field trials were carried out in the same region, using a concentration of 1x10^7 conidia/mL in containers with Aedes larvae from the area, evaluating larval mortality at 48 hours. To analyze the difference between treated and untreated groups, the Wilcoxon test (P=0.05) was applied using the R program version 4.4.0 (https://www.r-project. org/). Results. T. asperellum showed high pathogenicity, causing 95% and 99% mortality in the in vitro and semi-field tests, respectively. Conclusion. This is the first report of this species infecting immature stages of Ae. aeg ypti in our country. These results suggest that it could be used in Colombia as an alternative to traditional control methods.


Article visits 12 | PDF visits 9


Downloads

Download data is not yet available.
  1. Laporta GZ, Potter AM, Oliveira JFA, et al. Global Distribution of Aedes aegypti and
  2. Aedes albopictus in a Climate Change Scenario of Regional Rivalry. Insects; 14. Epub
  3. ahead of print 1 January 2023. DOI: 10.3390/insects14010049.
  4. Ruiz-López F, González-Mazo A, Vélez-Mira A, et al. Presencia de Aedes (Stegomyia)
  5. aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no
  6. registradas para Colombia. Biomedica 2016; 36: 303–308.
  7. Castrillón JC, Castaño JC, Urcuqui S. Dengue en Colombia: diez años de evolución.
  8. Revista chilena de infectología 2015; 32: 142–149.
  9. Bliman PA. A feedback control perspective on biological control of dengue vectors by
  10. Wolbachia infection. Eur J Control; 59. Epub ahead of print 2021. DOI:
  11. 1016/j.ejcon.2020.09.006.
  12. Rodrigues-Alves ML, Melo-Júnior OA de O, Silveira P, et al. Historical Perspective and
  13. Biotechnological Trends to Block Arboviruses Transmission by Controlling Aedes
  14. aegypti Mosquitos Using Different Approaches. Frontiers in Medicine; 7. Epub ahead
  15. of print 2020. DOI: 10.3389/fmed.2020.00275.
  16. Silveira A, Andrade J, Guissoni A, et al. Larvicidal potential of cell wall degrading
  17. enzymes from Trichoderma asperellum against Aedes aegypti (Diptera: Culicidae).
  18. Biotechnol Prog; 37.
  19. Podder D, Ghosh SK. A new application of Trichoderma asperellum as an anopheline
  20. larvicide for eco friendly management in medical science. Sci Rep; 9. Epub ahead of
  21. print 1 December 2019. DOI: 10.1038/s41598-018-37108-2.
  22. Cisneros-Vázquez LA, Penilla-Navarro RP, Rodríguez AD, et al. Entomopathogenic
  23. fungi for the control of larvae and adults of Aedes aegypti in Mexico. Salud Publica
  24. Mex 2023; 65: 144–150.
  25. Domsch KH, GW and ATH. Compendium of Soil Fungi. London: IHW-Verlag, 1993.
  26. Miranda E, Sandoval L. Desarrollo de un método rápido y sencillo para el
  27. aislamiento de DNA de especies fúngicas que afectan el arroz y el tabaco.
  28. Fitosanidad. marzo de 2000;4(1-2):107-8.
  29. Puntener W. Manual for Field Trials in Plant Protection. Basle, Switzerland : Ciba-
  30. Geigy Limited, 1981.
  31. Monte E. The sophisticated evolution of Trichoderma to control insect pests.
  32. Proceedings of the National Academy of Sciences of the United States of America; 120.
  33. Epub ahead of print 2023. DOI: 10.1073/pnas.2301971120.
  34. Foresman D, Tartar A. The transcriptome of the entomopathogenic fungus
  35. Culicinomyces clavisporus contains an ortholog of the insecticidal ribotoxin Hirsutellin.
  36. PeerJ; 11. Epub ahead of print 2023. DOI: 10.7717/peerj.16259.
  37. Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal
  38. immunity. Insect Biochem Mol Biol; 111. Epub ahead of print 1 August 2019. DOI:
  39. 1016/j.ibmb.2019.103182.
  40. Shen D, Nyawira KT, Xia A. New discoveries and applications of mosquito fungal
  41. pathogens. Current Opinion in Insect Science 2020; 40: 111–116.
  42. Sundaravadivelan C, Padmanabhan MN. Effect of mycosynthesized silver nanoparticles
  43. from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes
  44. aegypti L. Environmental Science and Pollution Research 2014; 21: 4624–4633.
  45. Mehmood N, Hassan A, Zhong X, et al. Entomopathogenic fungal infection following
  46. immune gene silencing decreased behavioral and physiological fitness in Aedes aegypti
  47. mosquitoes. Pestic Biochem Physiol; 195. Epub ahead of print 2023. DOI:
  48. 1016/j.pestbp.2023.105535.
  49. Sweeney AW. The time-mortality response of mosquito larvae infected with the fungus
  50. Culicinomyces. J Invertebr Pathol; 42. Epub ahead of print 1983. DOI: 10.1016/0022-
  51. (83)90058-7.
Sistema OJS 3.4.0.5 - Metabiblioteca |