Skip to main navigation menu Skip to main content Skip to site footer

Value added for goat whey from dairy agribusiness: lactic acid as decontamination alternative

Valor agregado para el lacto suero de caprino proveniente de agroindustrias lácteas: ácido láctico como alternativa de descontaminación




Section
Artículo Original

How to Cite
Plata, A., Ramírez, S., & Riaño Luna, C. E. (2013). Value added for goat whey from dairy agribusiness: lactic acid as decontamination alternative. NOVA, 11(19). https://doi.org/10.22490/24629448.1023

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Alexandra Plata
    Sandra Ramírez
      Campo Elías Riaño Luna

        The lacto goat whey (SLC) is a low economic value sub product, considered as industrial waste in Colombia, with negative environmental impact on ecosystems- (BOD 60,000 COD ppm and 80,000 ppm). This study aimed to characterize the SLC, multiply Lactobacillus helveticus (LH) strain and assess its applicability to the production of lactic acid-AL from LSLC treated and enriched with three nutrients. Variables studied following a latin greco square design. For this purpose kinetic 16 were carried out in intermittent biofermenter containing 250 milliliters of LSLC. Increased production of lactic acid (17.72 grams per liter) was achieved after 50 hours using a media containing 2.5% yeast extract, riboflavin 0.6% and 0.45% ammonium sulfate and the biofermenter operating at 42° C.

        Article visits 182 | PDF visits 102


        Downloads

        Download data is not yet available.
        1. Altiok, D. Kinetic Modelling of Lactic Acid Production from Whey. Master of Science. Izmir, Turkey; Izmir Institute of Technology, Food Engineering; 2004.
        2. Akeberg, C.; K. Hofvendahl; G. Zacchi & Hahn, H. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lac-tococcus lactis ssp. lactis ATCC 19435 in whole _ wheat flour. Applied Microbiology and Biotechnology. 1998; 49: 682 - 690.
        3. Aguirre-Eskauriatza, J. Producción de proteína liofilizada y biomasa de Lactobacillus casei BPG4 liofilizada, a partir de suero de leche de cabra. Tesis de Maestría. México: Tecnológico de Monterrey; 2008.
        4. Alais, C. Ciencia de la leche. Principios de técnica lechera. México: CECSA; 1970.
        5. Altiok, D., Tokatli, F. & Harsa, S. Kinetic modeling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technoogy and Biotechnology. 2006;81: 1190-1197.
        6. Association Of Official Agricultural Chemists. Official Methods Of Analysis.13th ed.: Washington, 1980.
        7. Betancur,J., Abad,P, Arias, M. & Restrepo, B. Inmovilización de lactobacillus helveticus en soportes vítreos obtenidos por tecnología sol-gel.Boletín de la Sociedad Española de Cerámica y Vidrio. 2003; 42,(2): 79-83.
        8. Boonmee, M., Leksawasdi, N.; Bridge, W. & Rogers, P. Batch and Continuous culture of Lactococcus lactis NZ133: Experimental data and model development. Biochemical Engineering Journal. 2003;14(2): 127-135.
        9. Estela, W; Rychtera, M, Melzoch, K, et al. Producción de acido láctico por Lactobacillus plantarum L10 en cultivos batch y continuo. Rev. peru biol. 2007; 14(2):271-276.
        10. Food Chemical Codex.7thed. The United States Pharmacopeial Convention. 2010.
        11. Foo, E. L.; H. G. Griffin; R. Mollby & Hedén, C. G. The Lactic Acid Bacteria: United Kingdom: Horizon Scientific Press, 1993:89 - 91.
        12. Fu, W. & Mathews, A. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and oxygen. Science Direct. Biochem Eng J. 1999; 3: 163- 170.
        13. Goksungur, Y & Guvenc, U. Production of lactic acid from beet molasses by calcium alginate immobilized Lactobacillus delbrueckii. Journal of Chemical Technology and Biotechnology. 1999; 74: 131 - 136.
        14. Ha, M. & Kim, S. Kinetics analysis of growth and lactic acid production in pH-controlled batch cultures of Lactobacillus casei KH-1 using yeast extract/corn steep liquor/glucose medium. Journal of Bioscience and Bioengineering. 2003; 96(2):134-140.
        15. Jin B, Yin P, Ma Y, Zhao L, J. Ind. Microbiol. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. Biotechnol. 2005: 32-678.
        16. Juarez, M., Ramos, M. & Martín, C. Quesos españoles de leche de cabra. Madrid: FESLAC; 1991.
        17. Lederberg, J. (Editor). Encyklopedia of Microbiology. 2a ed. New York :The Rockefeller University, 1992; (3): 1 - 17.
        18. Microbiología industrial. (s.f). Disponible en línea: www.una-varra.es/genmic/micind-2-2.htm. (23 de junio de 2007).
        19. Montgomery, D. & Runger, G. Probabilidad y Estadística. 2a ed. México: Mc Graw Hill Intermericana Editores; 2000.
        20. Ocampo, O., Urbina C.E., Juárez, C., Ruiz, N. & Galíndez, J. Depuración del suero común cultivo mixto de levaduras, utilizando un sistema por lote alimentado y alimentado repetido. Tecnología Láctea Latinoamericana. 2000, (20), 44-52.
        21. Prescott, S. & Duna, C. Microbiología Industrial. 2a. Madrid: Aguilar, S. A. de Ediciones; 2000.
        22. Rojan, P., Madhavan, N., and Pandey, A. Solid-state fermentation of L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry. 2006; (41), 759-763.
        23. Serna, L., and A. Rodríguez. Lactic acid production by a strain of Lactococcus lactis subsp. lactis isolated from sugar cane plants. Elect. J. Biotechnol. 2006, 9:40-45.
        24. Urribarrí, L. Producción de ácido láctico a partir de suero de leche, utilizando Lactobacillus helveticus en cultivo continuo. Revista Científica. Universidad del Zulia. 2004; 14(4).
        Sistema OJS 3.4.0.5 - Metabiblioteca |