Skip to main navigation menu Skip to main content Skip to site footer

Response surface method for the optimization of lactic acid production conditions from dairy sub products: SLC

Método de superficie de respuesta para optimizar las condiciones de producción de ácido láctico a partir de subproductos lácteos: SLC




Section
Artículo Original

How to Cite
Plata, A., Ramírez, S., & Riaño Luna, C. E. (2012). Response surface method for the optimization of lactic acid production conditions from dairy sub products: SLC. NOVA, 10(18). https://doi.org/10.22490/24629448.1004

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Alexandra Plata
    Sandra Ramírez
      Campo Elías Riaño Luna

        In the study the production of lactic acid from whey goats as main substrate (SLC) was optimized, following 2k experimental design combined with a central composite design and response surface analysis. It was also determined the combined effects of the concentration of three nutrient level (Riboflavin, yeast extract, ammonium sulfate): X1 and temperature (0C): X2 in lactic acid concentration. According with the results there is enough statistical evidence (95% confidence) that showed that the temperature and the concentration of complement and their interaction influence the production of lactic acid obtained by fermenting goat whey. The greatest lactic acid production (23, 68 g / liter) and bacterial growth were gotten with higher concentrations of nutrients and temperature of 42 ° C.

        Article visits 198 | PDF visits 124


        Downloads

        Download data is not yet available.
        1. Kononovich, N. Whey utilization and whey products”. J. Dairy Sci. 1979; 62(7): 1149-1160.
        2. Quintero, H.; Rodriguez, M.; Paez, G.; Ferrer, J.; Marmol, Z. & Rincon, M. Produccion continua de proteina unicelular (K. fragilis) a partir de suero de leche. Rev. Cient., FCV-LUZ. 2001, XI (2): 87-94.
        3. John R, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 2007; 74: 524-34.
        4. Brock, T. & Madigan, M. Biology of microorganisms. 6th. N.J, Englewood Cliffs: Prentice- Hall. Ed: 1991.
        5. Wee, Y., Kim, J., Yun, J, & Ryu, H. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology. 2004; 35: 568-573.
        6. Szabo, L. P & I. Kirisci. L(+) – Lactic acid separation on enantiomodifiedzeolite membrane. Hungary Journal of Industrial Chemistry. 1998; 26(2): 147 – 149.
        7. Goksungur, Y. & Guvenc, U. Production of lactic acid from beet molasses by calcium alginate immobilized Lactobacillus delbrueckii. Journal of Chemical Technology and Biotechnology.1999; 74: 131 – 136.
        8. Kadam, S., Patil, S., Bastawde, K., Khire, J. & Gokhale, D. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochemistry. 2006; 41:120-126.
        9. Estela, W., Rychtera, M. & Melzoch, K. Producción de ácido láctico por Lactobacillus plantarum L10 en cultivos batch y continuo. Rev. Reru Biol. 2007; 14, (2): 271-276
        10. Akerberg, C., & Zacchi, G. An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technol. 2000; 75:119-126.
        11. Hofvendahl K, Hahn-Hagerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbiol Technol, 2000; 26: 87-107.
        12. Ramírez, S., Plata, A., & Riaño, C.E. Valor agregado para el lacto suero de caprino proveniente de agroindustrias lácteas: ácido láctico como alternativa de descontaminación.
        13. Literatura gris.
        14. Roy, D., Goullet, J. & Leduy, A.. Batch fermentation of whey ultrafiltrate by L. helveticus for lactic acid production. Appl. Microbiol. Biotechnol. 1990, 24 (3): 206-213.
        15. Zumbado, W., Esquivel, P. & Worng, E. Selección de una levadura para producción de biomasa, crecimiento en suero de queso. Agronomía Mesoamericano. 2006; 17(2):151-160.
        16. Escobar, L., Rojas, C., Giraldo, G. & Padilla, L. Evaluación del crecimiento de lactobacillus casei y producción de ácido láctico usando como sustrato el suero de leche de vacuno. .Rev. Invest. Univ. Quindio. 2010; (20): 42 - 49.
        17. Tango, M. & Ghaley, A. Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions. Biomass and Bioenergy. 1999; (16):61-78.
        18. Urribarri,L., Vielma, A., Paez, G., Ferrer, J., Marmol, Z. & Ramones, E. Producción de ácido láctico a partir de suero de leche, Utilizando Lactobacillus helveticus en cultivo continuo. Revista Cientifica, FCV-LUZ. 2004; 14 (4): 297- 302.
        19. Montgomery, D. C. (2002). Diseño y Análisis de Experimentos. 2a ed. México: Mc Graw Hill Intermericana Editores; 2000.
        20. Serna, L., and A. Rodríguez. Lactic acid production by a strain of Lactococcus lactis subsp. lactis isolated from sugar cane plants. Elect. J. Biotechnol. 2006, 9:40-45.
        21. Gummadi, S.N. Biochemical Engineering. Editorial Prentice-Hall. 2007.
        22. Box, G., Hunter, W. & Hunter, J. Statistics for experimenter. An introduction to design, data analysis and model building. USA: John Wiley & Sons; 1978.
        23. Aguirre-Ezkauriatza, E., Ramírez, A., Aguilar, J. & álvarez, M. Producción de proteína y biomasa prebiótica de Lactobacillus casei liofilizadas a partir de suero de leche de cabra. Revista
        24. Mexicana de Ingeniería Química. 2009; 8 (1): 67-76.
        25. Association Of Official Analytical Chemists (A.O.A.C). (2007). Official Methods of Analysis. 16 th ed.: 3rd Revision. 24. Ben Amor, K.; E. E. Vaughan & W. M. de Vo. Advanced molecular tools for the identification of lactic Acid bacteria. Journal of Nutrition. 2007; 137(3): 741 – 747.
        26. Kilic, M., Bayraxtar, E., Ates, S. & Mehmetoglu, U. Investigation of extractive citric acid fermentation using responsesurface methodology. Process Biochem. 2002; (37): 759-767.
        27. Ye, K., Jin, S. & Shimizu, K. Performance improvement of lactic acid fermentation by multistage extractive fermentation. J Ferm Bioeng. 1996; 81 (3): 240-246.
        28. -----------------------------------------------------------------------------------
        29. DOI: http://dx.doi.org/10.22490/24629448.1004
        Sistema OJS 3.4.0.5 - Metabiblioteca |