Skip to main navigation menu Skip to main content Skip to site footer

Determination of secondary metabolites from Bacillus subtilis with effect biological control on Fusarium sp.

Determinación de metabolitos secundarios a partir de Bacillus subtilis efecto biocontrolador sobre Fusarium sp.




Section
Artículo Original

How to Cite
Ariza, Y. (2012). Determination of secondary metabolites from Bacillus subtilis with effect biological control on Fusarium sp. NOVA, 10(18). https://doi.org/10.22490/24629448.1003

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Yesid Ariza

    The use of microorganisms for biological control of plants diseases in an effective alternative that reduce pesticides use that affect soil fertility. Bacillus genus has become a point of interest due the production of secondary metabolites with antifungal properties effective against several phytopathogenics such as Fusarium, Pythium, Phytophthora and Rhizoctonia. The aim of this study was to identify the presence of secondary metabolites produced by liquid fermentation from Bacillus subtilis, analyzed by High-performance liquid chromatography (HPLC), and confirm its biocontrol effect on Fusarium sp. The antibiotic iturin A was identified, with a concentration around 151,805 mg/l. In vitro antagonism tests showed 70 to 100% growth inhibition of Fusarium sp. In the near future is expected to identify the existence of other secondary metabolites with possible significant effect on the plant protection, such as surfactin and fengycin.

    Article visits 307 | PDF visits 192


    Downloads

    Download data is not yet available.
    1. S. Mizumoto . M. Hirai . M. Shoda. Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol. 2006; 72: 869–875.
    2. Naorska, K., Bikowski, M. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica
    3. Polonica. 2007; 54: 495-508.
    4. Bais, H.P., Fall, R., Vivanco, J.M., Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology. 2004; 134: 307–319.
    5. Muaaz Mutaz Al-Ajlani, Muhammad Abid Sheikh, Zeeshan Ahmad and Shahida Hasnain. Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories. 2007; 6:17.
    6. Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 2006; 57: 609–618.
    7. Mireles, J.R.; Toguchi, A.; Harshey, R.M. Salmonella enterica serovar typhimurium swarming mutants with altered biofilmforming abilities: surfactin inhibits biofilm formation. J. Bacteriol.
    8. ; 183: 5848–5854.
    9. Niran Roongsawang, Kenji Washio and Masaaki Morikawa. Review Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants, International Journal of Molecular Sciences ISSN 1422-0067, Int. J. Mol. Sci. 2011; 12: 141-172.
    10. Roongsawang, N.; Thaniyavarn, J.; Thaniyavarn, S.; Kameyama, T.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles. 2002; 6: 499–506.
    11. Isogai, I.; Takayama, S.; Murakoshi, S.; Suzuki, A. Structure of β-amino acids in antibiotics iturin A. Tetrahedron Lett. 1982, 23: 3065–3068.
    12. Leclere, V.; Marti, R.; Bechet, M.; Fickers, P.; Jacques, P. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch.
    13. Microbiol. 2006; 186: 475–483.
    14. Moyne, A.L.; Cleveland, T.E.; Tuzun, S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 2004; 234: 43–49.
    15. Tsuge, K.; Akiyama, T.; Shoda, M. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 2001, 183, 6265–6273.
    16. Hansen, D.B.; Bumpus, S.B.; Aron, Z.D.; Kelleher, N.L.; Walsh, C.T. The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J. Am. Chem. Soc. 2007; 129: 6366–6367.
    17. Wu, C.Y.; Chen, C.L.; Lee, Y.H.; Cheng, Y.C.; Wu, Y.C.; Shu, H.Y.; Gotz, F.; Liu, S.T. Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. J.
    18. Biol. Chem. 2007, 282: 5608–5616.
    19. Gonzalez, M., I. Torres y H. Guzman. 2002. Búsqueda de resistencia natural contra patógenos de raíz Phytophthora capsici, Fusarium solani y Fusarium oxysporum en colectas de Chile. Proceedings of the 16th Internacional Pepper Conference. Tampico y Tamaulipas, México.
    20. Juan Guillermo Cubillos Hinojosa1; Alberto Paez Redondo y Lauris Mejia Doria. Evaluation of the Biocontrol Capacity of Trichoderma harzianum Rifai against Fusarium solani (Mart.) Sacc. Associated to the Complex “Dryer” in Passion Fruit Under Greenhouse Conditions. Int. J. Mol. Sci. 2010; 11: 4526-4538.
    21. Sá nchez L, Corrales L, Lancheros A. Evaluación in vivo de potencial biocontrolador de morfotipos bacterianos nativos contra fusarium oxysporum y caracterización por PCR de los microorganismos mas eficientes. Grupo Ceparium UCMC. 2008. Literatura gris.
    22. Mitidieri, L. Control Biologico de hongos del suelo con Trichoderma. IDIA. 1988; 44:45-49.
    23. Whipps, JM. 1987. Effect of media of growth and interactions between a range of soil-borne glass-house pathogens and antagonistic fungi. New Phytol.,107: 127-142.
    24. S. Mizumoto & M. Hirai & M. Shoda. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol (2007) 75:1267–1274.
    25. Georgiou, G.; Lin, S.C.; Sharma, M.M. Surface-active compounds from microorganisms. Biotechnology (NY) 1992, 10: 60–65.
    26. Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968; 31: 488–494.
    27. Eppelmann, K.; Stachelhaus, T.; Marahiel, M.A. Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 2002, 41: 9718–9726.
    28. Kim, P.I.; Ryu, J.; Kim, Y.H.; Chi, Y.T. Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 2010; 20: 138–145.
    29. Maget-Dana R, Peypoux F. Iturins, a special class of poreforming lipopeptides: biological and physicochemical properties. Toxicology. 1994;87: 151–174.
    30. Mohammad Shahedur Rahman∗, Takashi Ano, Makoto Shoda, Second stage production of iturin A by induced germination of Bacillus subtilis RB14, Journal of Biotechnology. 2006;125:513–515.
    31. Francois Coutte & Didier Lecouturier, Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor, Appl Microbiol Biotechnol. 2010; 87:499–507.
    32. Jing Li, Qian Yang, Li-hua Zhao, Shu-mei Zhang, Yu-xia Wang, and Xiao-yu Zhao. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J Zhejiang Univ Sci B. 2009; 10(4): 264–272.
    33. -----------------------------------------------------------------------------------
    34. DOI: http://dx.doi.org/10.22490/24629448.1003
    Sistema OJS 3.4.0.5 - Metabiblioteca |