Prognostic value of biochemical markers in patients with COVID-19
Valor pronóstico de los marcadores bioquímicos en pacientes con COVID-19
NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.
Furthermore, the authors keep their property intellectual rights over the articles.
Show authors biography
SARS-CoV-2 is a virus from the coronaviridae family, coronavirus (CoV) subfamily and genus β, it has become an imminent threat to all humanity as it is the causal agent of the COVID-19 pandemic, which led to On the one hand, the World Health Organization (WHO) declares a worldwide health emergency, and on the other, to institute strict control measures to prevent its spread by many governments. Regarding the pathophysiology presented in this entity, although lung lesions have been considered the main consequences of this infection, as knowledge about the virus progresses, cardiac, hepatic, and renal lesions have also been identified that enhance severity of the infection generating greater deterioration of the patients, their admission to the Intensive Care Units and a higher risk of mortality; Based on this, various investigations have aimed to determine those clinical and paraclinical findings that may be relevant to the prognosis of the patients. Therefore, this review addresses available literature on the main biochemical biomarkers reported for their association with cardiac, liver and kidney damage, which are more significant in evaluating the course, severity, management and prognosis of the infection and whose alteration ultimately leads to an increased risk of mortality in hospitalized patients presenting with COVID-19.
Article visits 836 | PDF visits 384
Downloads
1. Clerkin K, Fried J, Raikhelkar J, Sayer G, Griffin J, Masoumi A, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020 [citado 17 de junio de 2020]; 141:1648–1655 DOI: 10.1161/CIRCULATIONAHA.120.046941
2. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45: 230–232. DOI: 10.1007/s00059-020-04909
3. Huang Ch, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497-506. DOI: 10.1016/S0140-6736(20)30183-5
4. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020 May-Jun;63(3):390-391. DOI: 10.1016/j.pcad.2020.03.001. Vestjens SMT, Spoorenberg SMC, Rijkers GT, et al. High-sensitivity cardiac troponin T predicts mortality after hospitalization for community-acquired pneumonia. Respirology. 2017;22(5):1000-1006. DOI:10.1111/resp.12996
5. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. DOI: 10.1001/jamacardio.2020.0950. G Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular
Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27;5(7):1–8. doi: 10.1001/jamacardio.2020.1017. Epub ahead of print. PMID: 32219356; PMCID: PMC7101506.Bai T, Tu S, Wei Y, Xiao L, Jin Y, Zhang L, et al. Clinical and Laboratory Factors Predicting the Prognosis of Patients with COVID-19: An Analysis of 127 Patients in Wuhan, SSRN, 2020 DOI: 10.2139/ssrn.3546118.
6. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. DOI: 10.1007/s00134-020-05991-x. Erratum in: Intensive Care Med. 2020 ABr 6.
7. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-838. DOI: 10.1016/j.kint.2020.03.005.
8. Ammirati E, Wang DW. SARS-CoV-2 inflames the heart. The importance of awareness of myocardial injury in COVID-19 patients. Int J Cardiol. 2020;311:122-123. DOI: 10.1016/j.ijcard.2020.03.086.
9. Zhou F, F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. DOI: 10.1016/S0140-6736(20)30566-3. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. Erratum in: Lancet. 2020 Mar 28;395(10229):1038.
10. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020; 21(74). https://doi.org/10.1186/s12931-020-01338-8
11. Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. doi: 10.1172/jci.insight.137799.
12. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(9):1025-1031. DOI: 10.1097/CM9.0000000000000744.
13. Mardani R, Vasmehjani A, Zali F, Gholami A, Nasab S, Kaghazian H, et al. Laboratory Parameters in Detection of COVID-19 Patients with Positive RT-PCR; a Diagnostic Accuracy Study. Mardani R, Ahmadi Vasmehjani A, Zali F, et al. Laboratory Parameters in Detection of COVID-19 Patients with Positive RT-PCR; a Diagnostic Accuracy Study. Arch Acad Emerg Med. 2020;8(1): e43
14. Herold T, Jurinovic V, Arnreich C, Lipworth B, Hellmuth J, Bergwelt-Baildon M, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146(1):128-136.e4. DOI: 10.1016/j.jaci.2020.05.008.
15. Wei YY, Wang RR, Zhang DW, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. J Infect. 2020;81(1):e89-e92. DOI:10.1016/j.jinf.2020.04.010
16. Xu, Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-422. DOI: 10.1016/S2213-2600(20)30076-X.
17. Siordia JA Jr. Epidemiology and clinical features of COVID-19: A review of current literature. J Clin Virol. 2020;127:104357. DOI:10.1016/j.jcv.2020.104357
18. W.J. Guan, Z.Y. Ni, Y. Hu, et al., Clinical characteristics of 2019 novel coronavirus infection in China, N Engl J Med 2020;382:1708-1720. DOI: 10.1056/NEJMoa2002032
19. Li Q, Ding X, Xia G, Geng Z, ChenF, Wang L, Wang Z. A simple laboratory parameter facilitates early identification of COVID-19 patients. Medxiv.2020. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.17.20037572v1
20. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020; 63: 364–374. DOI:10.1007/s11427-020-1643-8
21. Aboughdir M, Kirwin T, Abdul Khader A, Wang B. Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review. Viruses. 2020;12(5):527. DOI:10.3390/v12050527
22. Vetter P, Vu DL, L’Huillier A, Schibler M, Kaiser L, Jacquerioz F. Clinical features of covid-19 The wide array of symptoms has implications for the testing strategy. BMJ. 2020; 369:m1470. DOI: 10.1136/bmj.m1470
23. Chan F, Yuan S, Kok K, To K, Chu H, Xing J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: study of a family cluster. Lancet 2020; 395: 514–23. DOI:10.1016/S0140-6736(20)30154-9
24. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13. DOI:10.1016/S0140-6736(20)30211-7
25. Inciardi R, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. DOI:10.1001/jamacardio.2020.1096
26. Wang D, Hu B, HuC, Zhu F,Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. DOI:10.1001/jama.2020.1585
27. Wan, S.; Xiang, Y.; Fang,W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; et al. Clinical Features and Treatment of COVID-19 Patients in Northeast Chongqing. J. Med. Virol. 2020;92(7):797-806. DOI:10.1002/jmv.25783.
28. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4. DOI:10.1186/s40779-020-0233-6
29. McRae M, Simmons G, Christodoulides N, Lu Z, Kang S, Fenyo D, et al. Clinical decision support tool and rapid point-ofcare platform for determining disease severity in patients with COVID-19. Lab Chip. 2020; 20:2075-85. DOI:10.1039/d0lc00373e.
30. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18: 844–847. DOI:10.1111/jth.14768
31. Lippi G, Favaloro EJ. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost. 2020;120(5):876-878. doi:10.1055/s-0040-1709650
32. Zhang L, Yan X, Fan Q, Lui H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-1329. DOI:10.1111/jth.14859
33. Bavishi C, Maddox TM, Messerli FH. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiol. 2020. DOI:10.1001/jamacardio.2020.1282
34. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O'Donnell L, Chernyak Y, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. DOI:10.1136/bmj.m1966
35. Holshue M, DeBolt C, Lindquist S, Lofy K, Wiesman J. Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020; N Engl J Med 2020; 382:929-936. DOI: 10.1056/NEJMoa2001191
36. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998-1004. DOI:10.1111/liv.14435
37. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo F, Chong F, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State JAMA. 2020;; 323(16):1612-1614. DOI:10.1001/jama.2020.4326
38. Wu J, Song S, Cao HC, Li LJ. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J Gastroenterol. 2020;26(19):2286-2293. DOI:10.3748/wjg.v26.i19.2286
39. Hui DSC, Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019;33(4):869-889. DOI: 10.1016/j.idc.2019.07.001
40. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131-1134. DOI: 10.1515/cclm-2020-0198
41. Xu XW, Wu XX, Jian XG, Xu KJ, Ying LJ, Ma CL, Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 2020.; 368 DOI: https://doi.org/10.1136/bmj.m606
42. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020;505:190-191. DOI:10.1016/j.cca.2020.03.004
43. Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. The Journal of infection. 2020;80(6):656–665. DOI: 10.1016/j.jinf.2020.03.041
44. Harapan H, ItohN, Yufika A, Winardi W, Keam S, Te H. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-673. DOI: 10.1016/j.jiph.2020.03.019.
45. L. Yan, H.T. Zhang, J. Goncalves, et al. A machine learning-based model for survival prediction in patients with severe COVID-19 infection, MedRxiv. 2020. DOI: 10.1101/2020.02.27.20028027.