Skip to main navigation menu Skip to main content Skip to site footer

Survival of Human Fibroblastic Cells in the Absence of Supplementation

Supervivencia de células fibroblásticas humanas en ausencia de suplementación



How to Cite
Survival of Human Fibroblastic Cells in the Absence of Supplementation. (2020). NOVA, 18(34), 47-56. https://doi.org/10.22490/24629448.3957

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Víctor Simancas Escorcia
    Antonio Díaz Caballero
      Clara Vergara Hernandez

        Introduction. Gingival fibroblasts (GF) are cells of gingival connective tissue that have taken promising relevance in recent years due to their probable use in cell therapy, given their multipotencial and self-renewal capabilities. Objective. To know and to describe the impact of the absence of Fetal Bovine Serum (FBS supplementation on the survival of gingival fibroblasts in cultures. Materials and methods. Gingival fibroblasts were isolated from gingival tissue of healthy patients and cultured in DMEM (Dulbecco’s Modified of Eagle Medium) culture media in absence and supplemented with 0.2% FBS at 37 ° C in a humid atmosphere with 5% CO2. A morphological evaluation, survival and proliferation of GF were carried out, as well as the identification by the immunofluorescence technique of cellular cytoskeleton markers such as actin and mitochondria. Results. The GF grown in the absence and with supplementation of 0.2% FBS showed a fusiform shape, with oval nuclei and numerous cytoplasmic extensions during the culture time. A slight increase in the proliferation of GF was observed in those cells in contact with the DMEM medium +0.2% FBS compared to the medium where the supplementation was absent. Immunostaining of actin and mitochondria showed that the absence and supplementation to 0.2% of FBS did not affect its location in the evaluated. Conclusion. Gingival fibroblasts survive and proliferate in the absence of FBS, preserving their cellular morphological characteristics.


        Article visits 168 | PDF visits 130


        Downloads

        Download data is not yet available.

        1. Park WS, Ahn SY, Sung SI, Ahn J-Y, Chang YS. Mesenchymal Stem Cells: The Magic Cure for Intraventricular Hemorrhage? Cell Transplantation. 2017;26(3):439–48. https://doi:10.3727/096368916X694193

        2. Subbanna PKT. Mesenchymal stem cells for treating GVHD: In-vivo fate and optimal dose. Medical Hypotheses. 2007 Jan 1;69(2):469–70. https://doi:10.1016/j.mehy.2006.12.016

        3. Phelan K, May KM. Basic Techniques in Mammalian Cell Tissue Culture. Current Protocols in Toxicology. 2016 Nov 1;70(1):A.3B.1-A.3B.22. https://doi:10.1002/cptx.13

        4. Donaldson C, Bishop K. Cell culture. Br J Hosp Med. 2015 Jan 2;76(1):C2–5. https://doi:10.12968/hmed.2015.76.1.C2

        5. Alam MdE, Iwata J, Fujiki K, Tsujimoto Y, Kanegi R, Kawate N, et al. Feline embryo development in commercially available human media supplemented with fetal bovine serum. Journal of Veterinary Medical Science. 2019;81(4):629–35. https://doi:10.1292/jvms.18-0335

        6. Jan van der Valk, Karen Bieback, Christiane Buta, Brett Cochrane, Wilhelm Dirks, Jianan Fu, et al. Fetal bovine serum (FBS): Past – present – future. ALTEX. 2018 Jan 17; 35(1). https://doi:10.14573/altex.1705101

        7. Wei Z, Batagov AO, Carter DRF, Krichevsky AM. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA. Scientific Reports. 2016 Aug 9; 6:31175. https://doi:10.1038/srep31175.

        8. Simancas-Escorcia V, Diaz-Caballero A. Fisiología y usos terapéuticos de los fibroblastos gingivales. Odous Cientifica. 2019; 20(1): 41-57. Disponible en: http://servicio.bc.uc.edu.ve/odontologia/revista/vol20n1/art05.pdf

        9. Jin SH, Lee JE, Yun J-H, Kim I, Ko Y, Park JB. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. Journal of Periodontal Research. 2015;50(4):461–7. https://doi:10.1111/jre.12228

        10. Castells-Sala C, Martorell J, Balcells M. A human plasma derived supplement preserves function of human vascular cells in absence of fetal bovine serum. Cell & Bioscience. 2017 Aug 14;7(1):41. https://doi:10.1186/s13578-017-0164-4

        11. Farzaneh M, Zare M, Hassani S-N, Baharvand H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. Journal of Cellular Biochemistry. 2018;119(8):6325–36. https://doi:10.1002/jcb.26761

        12. Azouna NB, Jenhani F, Regaya Z, Berraeis L, Othman TB, Ducrocq E, et al. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Research & Therapy. 2012 Feb 14;3(1):6. https://doi:10.1186/scrt97

        13. Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G. Serum-free cell culture: the serum-free media interactive online database. ALTEX. 2010;27(1):53–62. https://doi:10.14573/altex.2010.1.53

        14. Freymann U, Metzlaff S, Krüger J-P, Hirsh G, Endres M, Petersen W, et al. Effect of Human Serum and 2 Different Types of Platelet Concentrates on Human Meniscus Cell Migration, Proliferation, and Matrix Formation. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2016 Jun 1;32(6):1106–16. https://doi:10.1016/j.arthro.2015.11.033

        15. Cowper M, Frazier T, Wu X, Curley LJ, Ma HM, Mohiuddin AO, et al. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells. 2019;8(7). https://doi:10.3390/cells8070724

        16. Pons M, Nagel G, Zeyn Y, Beyer M, Laguna T, Brachetti T, et al. Human platelet lysate as validated replacement for animal serum to assess chemosensitivity. ALTEX - Alternatives to animal experimentation. 2019 Apr;36(2):277–88. https://doi:10.14573/altex.1809211.

        17. Carrera Páez, L. C., Pirajan Quintero, I. D., Urrea Suarez, M. C., Sanchez Mora, R. M., Gómez Jiménez, M., & Monroy Cano, L. A. (2015). Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis. NOVA, 13(23). Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/284

        18. Ordoñez Vásquez, A., Jaramillo Gómez, L., Ibata, M., & Suárez-Obando, F. (2017). Técnica de Tinta China en células adherentes en cultivo. NOVA, 14(25), 9-17. Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/510

        19. Richter U, Lahtinen T, Marttinen P, Myöhänen M, Greco D, Cannino G, et al. A Mitochondrial Ribosomal and RNA Decay Pathway Blocks Cell Proliferation. Current Biology. 2013 Mar 18;23(6):535–41. https://doi:10.1016/j.cub.2013.02.019

        20. Komuro Y, Miyashita N, Mori T, Muneyuki E, Saitoh T, Kohda D, et al. Energetics of the Presequence-Binding Poses in Mitochondrial Protein Import Through Tom20. J Phys Chem B. 2013 Mar 14;117(10):2864–71. https://doi:10.1021/jp400113e

        Sistema OJS 3.4.0.5 - Metabiblioteca |