Skip to main navigation menu Skip to main content Skip to site footer

Selecting a spray system for the formation of Eudragit ® S100 microparticles in a fluid bed

Selección de un sistema de atomización para la formación de micropartículas de Eudragit® S100 en lecho fluido




Section
Artículo Original

How to Cite
Camacho, J. E., Villamizar, L. F., & Gómez, M. I. (2010). Selecting a spray system for the formation of Eudragit ® S100 microparticles in a fluid bed. NOVA, 8(13). https://doi.org/10.22490/24629448.442

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Judith Elena Camacho
    Laura Fernanda Villamizar
      Martha Isabel Gómez

        The development of microparticles in fluid bed is of high interest in the pharmaceutical, food and agriculture, as this type of formulation to control the release of active ingredients and their stability and functionality by the formation of small solid particles. The fluid bed equipment is commonly used in industry  to carry out the process and this can have two sets of spray drying: top spray and bottom spray.In thisstudy we evaluatedthe two setsofspraydrying towardstheformationofmicroparticlesofEudragit®S100. Experiments were conducted toadjustthecritical processfactorsandtheirlevelsusingamultilevelfactorialdesignand working inaGlattfluid bedbrandGmbHD-01277. Factorsevaluatedwerethe inlet temperature, thepressure insidethe chamber andtheflow rate. The coating materialconsisted ofamethacrylicacid polymerknownasEudragit® S100andcore325 meshpowderwasused.The system selected for the microencapsulation was top spray. The spray dryingconditions were set flow rate of4.12 mL/min (flow 8 rpm), inlet temperature of 80ºC and pressure inside the chamber 1 and 3 bars.The microparticles showed homogeneous shapes and sizes, less than 100 microns. The conditions set for the top spray system can be applied to the development of microencapsulation processes of different active ingredients using as polymer Eudragit® S100.


        Article visits 234 | PDF visits 110


        Downloads

        Download data is not yet available.
        1. Li X., Anton N, Arpagaus C, Belleteix F, Vandamme Th. 2010. Nanoparticles by Spray drying using innovate new technology: The Büchi Nano Spray Dryer B-90. Journal of Controlled Release 147: 304-310
        2. Beck R. C. R, Pohlmann A. R, Guterres S. 2004. Nanoparticle-coated microparticles: preparation and characterization. J. Microencapsula-tion. 21: 499–512
        3. Yu C, Wang W, Yao H, Liu H. 2007. Preparation of Phospholipid Microcapsule by Spray Drying. Drying Technology 25: 695–702
        4. Liu Ch, Liu S-D. 2009. Low-Temperature Spray Drying for the Microencapsulation of the Fungus Beauveria bassiana. Drying Technology 27:747–753
        5. Bürki K, Jeon I, Arpagaus C, Betz G. 2011. New insights into respirable protein powder preparation using a nano spray dryer. International Journal of Pharmaceutics 408: 248–256
        6. Winder R S, Wheeler J J, Conder N, Otvos I S, Nevill R, Duan L. 2003. Microencapsulation: A Strategy for Formulation of Inoculum Biocontrol. Science and Technology 13:155-169
        7. Fini A, Cavallari C, Ospitali F. 2008. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles. European Journal of Pharmaceutics and Biopharmaceutics 70: 409–420
        8. Ronsse F, Pieters J, Dewettinck K. 2008. Modelling side-effect spray drying in top-spray fluidized bed coating processes. Journal of Food Engineering 86: 529–541
        9. Turchiuli C, Gianfrancesco A, Palzer S, Dumoulin E. 2011. Evolution of particle properties during spray drying in relation with stickiness and agglomeration control.Powder Technology 208: 433–440
        10. Tajber L, Corrigan O, Healy A. 2009. Spray drying of budesonide, formoterol fumarate and their Composites—II. Statistical factorial design and in vitro deposition properties. International Journal of Pharmaceutics 367: 86–96
        11. Srivastava S, Mishra G. 2010. Fluid Bed Technology: Overview and Parameters for Process Selection. International Journal of Pharmaceutical Sciences and Drug Research 2: 236-246
        12. Ronsse F, Pieters J. G, Dewettinck K. 2009. Modelling heat and mass transfer in batch, top-spray fluidised bed coating processes. Powder Technology 190: 170–175
        13. Mafadi S, Hayert M, Poncelet D. 2003. Fluidization Control in the Wurster Coating Process. Chem. Ind. 57: 641-644)
        14. Fitzpatrick S, Ding Y, Seiler Ch, Lovegrove C, Booth S, Forster R, Parker R, Jonathan S. 2003.Positron Emission Particle Tracking Studies of a Wurster Process for Coating Applications.Pharmaceutical Technology 70-78.
        15. Glatt. com http://www.glatt.com/e/01_tecnologien/01_04_09.htm (consulta septiembre del 2010)
        16. Cheow W, Li S, Hadinoto K. 2010.Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design chemical engineering research and design 88: 673–685
        17. Kho K, Hadinoto K. 2010a. Effects of excipient formulation on the morphology and aqueous re-dispersibility of dry-powder silica nanoaggregates Colloids and Surfaces A. Physicochem. Eng. Aspects 359: 71–81
        18. Kho K, Hadinoto K. 2010b. Aqueous re-dispersibility characterization of spray-dried hollow spherical silica nano-aggregates. Powder Technology 198: 354–363
        19. Villamizar L, Martínez F.2008. Determination of the basic conditions for microencapsulation of an enthomopathogenic Baculovirus by means of coacervation using Eudragit S100®. VITAE 15:123- 131
        20. Lopedota A, Trapani A, Cutrignelli A, Chiarantini L, Pantucci E, Curci R, Manuali E, Trapani G. 2009. The use of Eudragit® RS100/cyclodextrin nanoparticles for transmucosal administration of glutathione. European Journal of Pharmaceutics and Biopharmaceutics 72: 509-520
        21. Villamizar L, Barrera G, Cotes A, Martínez F.2010. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: Physicochemical, characterization,photostability and invitro virus release. J. Microencapsulation 27:314-324
        22. Charpentier A, Gadielle P, Benoit P. 1999. Rhizobacteria microencapsulation : properties of microparticles obtained by spray-drying.
        23. J. Microencapsulation 16: 215-229
        24. Tamez P, McGuire M, Behle R, Shasha B, Pingel R. 2002. Storage Stability of Anagrapha falcifera nucleopolyehedrovirus in spray dried formulations. Journal of Invertebrate Pathology 79: 7–16
        25. Behle R, Tamez-Guerra P, Mcguire M. 2006. Evaluating conditions for producing spray-dried formulations of Anagrapha falcifera nucleopolyhedroviruses (AfMNPV). Biocontrol Science and Technology 16:941-952
        26. Young S. 2005. Persistence of viruses in environment.http: www.Agctr.isu.edu/s265/young.html (consulta septiembre 2010).
        27. Jin X, Custis D. 2011. Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control 56: 202–208
        28. Johansen P, Merkle H, Gander B. 2000. Technological considerations related to the up-scaling of prote in microencapsulation by spray-drying. European Journal of Pharmaceutics and Biopharmaceutics 50:413-417
        29. Horaczek A, Viernstein H. 2004. Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of Beauveria brongniartii and Metarhizium anisopliae. Biological Control 31: 65–71
        30. Hede P, Bach P, Jensen A. 2008. Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force. Powder Technology
        31. -------------------------------------------------------------------------------
        32. DOI: http://dx.doi.org/10.22490/24629448.442
        Sistema OJS 3.4.0.5 - Metabiblioteca |