Skip to main navigation menu Skip to main content Skip to site footer

Cariotipo del tití gris (Saguinus leucopus): similitudes con el cariotipo humano

Cariotipo del tití gris (Saguinus leucopus): similitudes con el cariotipo humano




Section
Artículo Original

How to Cite
Cariotipo del tití gris (Saguinus leucopus): similitudes con el cariotipo humano. (2008). NOVA, 6(10). https://doi.org/10.22490/24629448.402

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Juan Hember Tabares
    Carlos Humberto Fierro
      Paola Del Pilar Pulido
        Humberto Ossa Reyes

          White-footed Tamarin (Saguinus leucopus) is a primate endemic to Colombia whose karyotype is described in this study from a pair of individuals located in the East of Caldas Wild Fauna Rehabilitation Center in Colombia. The blood samples were collected from the femoral vein and anti-coagulated with heparin sodium. The chromosomes obtained by the classic method of culture of lymphocytes as well as Q and G banding. The individuals display 46 chromosomes (2n = 46: 30Bi, 14A); sexual chromosomes XX in female and XY in the male (chimerism 46, XX/46, XY in this last one). An ideogram for the White-footed Tamarin karyotype is proposed. Ample similarities in S. leucopus chromosomes Xy 5 are observed and with human chromosomes Xy 19, respectively. Other partial similarities were demonstrated between chromosomes 1 of both species, S. leucopus 2 and 14 with human 7. The comparison of the size of exonic regions of two genes of S. leucopus and Homo sapiens did not show any difference.

          Article visits 267 | PDF visits 110


          Downloads

          Download data is not yet available.
          1. Poveda K. Uso de hábitat de dos grupos de tití de pies blancos, Saguinus leucopus, en Mariquita, Colombia. Trabajo de grado. Universidad Nacional de Colombia. Bogotá. 2000.
          2. IUCN Lista roja. http://www.iucnredlist.org/details/19819. 2008.
          3. Leguizamón N, Ruiz-García M, Castillo MI. Aplicaciones de los análisis genético poblacionales a partir de genotipos multilocus y metodologías basadas en modelos bayesianos para la conservación del primate Saguinus leucopus. Revista: Conservación ex situ. Investigación para el manejo en cautiverio y conservación de la fauna silvestre. Editorial Leguizamón. Departamento Técnico Administrativo de la Alcaldía Mayor de Bogotá. 2006.
          4. Carroll B. Guías para el estudio de calitrícidos. Bristol Zoo Gardens, 2002.
          5. Scheneider H. The Current Status of the New World Monkey Phylogeny. An Acad Bras Ciênc 2000;72:165-172.
          6. Nagamachi CY, Pieczarka JC, Muniz JA, Barros RM, Mattevi MS. Proposed chromosomal phylogeny for the South American primates of the Callitrichidae family (Platyrrhini). Am J Primatol. 1999;49:133-152.
          7. Nagamachi, C.Y. and Pieczarka, J.C. Chromosome studies of Saguinus midas niger (Callithrichidae, Primates) from Tucuruí, Pará, Brazil: Comparison with the karyotype of Callithrix jacchus. Am J Primatol. 1988; 14:277-284.
          8. Mendes SM, de Souza RM. Cytogenetic study of the genus Saguinus (Callithrichidae, Primates). Braz J Genet. 1997;20:1-5.
          9. Moorhead PS, Norwell PC, Melman WJ, Battips DM and Hungerford DA. Chromosome preparation of leucocytes cultured from human peripheral blood. Exp Cell Res. 1960;20:613-615.
          10. Caspersson T, Zech l, Johansson, C, Modest EJ. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma. 1970;30:215-227.
          11. Seabright, M. Rapid banding techniques for human chromosomes. Lancet 1971;2: 971-972.
          12. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common Genetic Variation in the 3’Unstranslated region for the Prothrombin gene is associated with elevated plasma Prothrombin levels and an increase in venous thrombosis. Blood 1996;88:3698-3703.
          13. Koksal V, Baris L, Etlik O. Primer-engineered multiplex PCRRFLP for detection of MTHFR C677T, Prothrombin G2021OA and Factor V Leiden mutations. Exp Mol Pathol 2007;83:1-3.
          14. Fox M, Brieva C, Moreno C, MacWilliams P, Thomas C. Hematologic and serum biochemistry reference values in wildcaught white-footed tamarins (Saguinus leucopus) housed in captivity. J Zoo Wildl Med. 2008;39:548-557.
          15. Murphy WJ, Frönicke L, O’Brien SJ and Stanyon R. The origin of human chromosome 1 and its homologs in placental mammals. Genome Res. 2003;13:1880-1888.
          16. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Long-term fetal microchimerism in peripheral blood
          17. mononuclear cell subsets in healthy women and women with scleroderma. Blood. 1999;93:2033-2037.
          18. Johnson KL, Nelson JL, Furst DE, McSweeney PA, Roberts DJ, Zhen DK, Bianchi DW. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum. 2001;44:1848-1854.
          19. -------------------------------------------------------------------------------
          20. DOI: http://dx.doi.org/10.22490/24629448.402
          Sistema OJS 3.4.0.5 - Metabiblioteca |