Evaluación del crecimiento de cuatro especies del género Bacillus sp., primer paso para entender su efecto biocontrolador sobre Fusarium sp.

Contenido principal del artículo

Autores

Estefania Castañeda Alvarez Ligia Consuelo Sánchez

Resumen

Objetivo. Evaluar las condiciones de crecimiento de cuatro especies de Bacillus sp. nativas a escala de 10ml en Medio Mínimo de Sales (MMS) como primer paso para entender su acción biocontroladora contra Fusarium sp. Método. El procedimiento para evaluar el crecimiento de los aislamientos UCMC-TB1, UCMC-TB2, UCMC-TB3 y UCMC-TB4 se realizó utilizando espectrofotometría y recuento directo en placa y pruebas de antagonismo dual en placa para evaluar el efecto controlador contra Fusarium sp. Resultados. Se confirmó la identificación por pruebas bioquímicas de los cuatro aislamientos: Bacillus licheniformis, Bacillus subtilis, Bacillus pumilus y Bacillus cereus; todas las cepas presentaron antagonismo in vitro. El Bacillus subtilis fue la especie que demostró mayor capacidad antagónica (79,73%PICR) y las características más destacadas de esta cepa fueron su velocidad de crecimiento. El género Bacillus es uno de los más reportados para usar en el control biológico de hongos como Fusarium sp. el cual ataca un gran número de cultivos de interés económico para el sector agrícola en Colombia.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos. 

Carta de originalidad y cesión de derechos de publicación

Se debe presentar para proceso editorial con fines de publicación del artículo una carta de originalidad y cesión de derechos de publicación (Descargar Aquí)

 

Referencias

1. Parra NSR. Contexto y perspectiva de la red de suministro: Plantas aromáticas en Colombia. Vol. 33, REVISTA ECONÓMICAS CUC. 2012. p. 135–56.
2. ASOHOFRUCOL [Internet]. [cited 2016 Nov 5]. Available from: http://www.asohofrucol.com.co/bibliotecavirtual.php
3. Laurence MH, Summerell BA, Burgess LW, Liew ECY. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol. 2014;118(4):374–84.
4. McGovern RJ. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015 Jul;73:78–92.
5. Zakaria L, Leong SK, Latiffah Z, Baharuddin S. Molecular Characterization of Fusarium Oxysporum F. Sp. Cubense of Banana. Am J Appl Sci. 2009;6(7):1301–7.
6. Steinkellner S, Mammerler R, Vierheilig H. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol. 2008 Nov 3;122(3):395–401.
7. Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, et al. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic (Amsterdam). 2012;135:32–9.
8. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol Control. 2009;50(3):205–21.
9. Baker KF (Kenneth F, Cook RJ. Biological control of plant pathogens. American Phytopathological Society; 1982.
10. Cook RJ, Abel P, Nelson R, De B, Hoffmann N, Rogers S, et al. Biological control and holistic plant-health care in agriculture. Am J Altern Agric. 1988 Jan 30;3(2–3):51.
11. El Arbi A, Rochex A, Chataigné G, Béchet M, Lecouturier D, Arnauld S, et al. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Res Microbiol. 2016 Jan;167(1):46–57.
12. Ojiambo PS, Scherm H. Biological and application-oriented factors influencing plant disease suppression by biological control: a meta-analytical review. Phytopathology. 2006;96(11):1168–74.
13. Pavlou GC, Vakalounakis DJ. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot. 2005;24(2):135–40.
14. Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control. 2008 Jul;46(1):46–56.
15. Nagórska K, Bikowski M, Obuchowski M. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol. 2007;54(3):495–508.
16. Leelasuphakul W, Hemmanee P, Chuenchitt S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol. 2008 Apr;48(1):113–21.
17. Kaur P, Bhardwaj NK, Sharma J. Process optimization for hyper production of xylanase via statistical methodology from isolated Bacillus pumilus 3GAH using lignocellulosic waste. Biocatal Agric Biotechnol. 2016 Apr;6:159–67.
18. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008 Mar 1;16(3):115–25.
19. Liu J, Hagberg I, Novitsky L, Hadj-Moussa H, Avis TJ. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 2014 Nov;118(11):855–61.
20. Latoud C, Peypoux F, Michel G. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: Modifications of membrane permeability and lipid composition. J Antibiot (Tokyo). 1987;40(11):1588–95.
21. Universidad Pública de Navarra. Cultivo de microorganismos. 2008;1–19.
22. Guérin A, Dargaignaratz C, Broussolle V, Clavel T, Nguyenthe C. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus. Vol. 59, Food Microbiology. 2016.
23. Dunlap CA, Bowman MJ, Schisler DA. Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biol Control. 2013 Feb;64(2):166–75.
24. Guez JS, Chenikher S, Cassar JP, Jacques P. Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol. 2007;131(1):67–75.
25. Kiss A, Balikó G, Csorba A, Chuluunbaatar T, Medzihradszky KF, Alföldi L. Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. J Bacteriol. 2008 Oct;190(19):6448–57.
26. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, et al. Influence of Culture Conditions on Lipopeptide Production by Bacillus subtilis. Appl Biochem Biotechnol. 2001;91–93(1–9):551–62.
27. Mizumoto S, Shoda M. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solidstate fermentation by response surface methodology. Appl Microbiol Biotechnol. 2007 Jul 31;76(1):101–8.
28. Fukusaki E, Panbangred W, Shinmyo A, Okada H. The complete nucleotide sequence of the xylanase gene (xynA) of Bacillus pumilus. FEBS Lett. 1984;171(2):197–201.
29. Krätzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989 Oct;171(10):5422–9.
30. Zhao X, Zhou Z, Han Y, Wang Z, Fan J, Xiao H. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res. 2013;168(9):598–606.
31. Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P. Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol. 2016;167(4):272–81.
32. Zhao Y, Sangare L, Wang Y, Folly YME, Selvaraj JN, Xing F, et al. Complete genome sequence of Bacillus subtilis SG6 antagonistic against Fusarium graminearum. J Biotechnol. 2015 Jan 20;194:10–1.
33. Consuelo L, Leal Msc S, Constanza L, Ramírez Msc C. Evaluación de la congelación para conservación de especies autóctonas bacterianas.
34. Ezziyyani M, Sánchez CP, Requena ME, Rubio L, Castillo MEC. Biocontrol por Streptomyces rochei – ziyani–, de la podredumbre del pimiento ( Capsicum annuum l.) Causada por Phytophthora capsici. An Biol. 2004;0(26):61–8.
35. Dauner M, Storni T, Sauer U, Sauer UWE. Bacillus subtilis
Metabolism and Energetics in Carbon-Limited and ExcessCarbon Chemostat Culture Bacillus subtilis Metabolism and Energetics in Carbon-Limited and Excess-Carbon Chemostat Culture. J Bacteriol. 2001;183(24):7308–17.
36. Piedrahíta-Aguirre CA, Alegre RM. Production of lipopeptide iturin a using novel strain Bacillus iso 1 in a packed bed bioreactor. Biocatal Agric Biotechnol. 2014 Apr;3(2):154–8.
37. Kapilan R, Arasaratnam V. Paddy Husk as Support for Solid State Fermentation to Produce Xylanase from Bacillus pumilus. Rice Sci. 2011;18(1):36–45.
38. Öztürk S, Çalık P, Özdamar TH. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review. Trends Biotechnol. 2016;34(4):329–45.
39. Şahin B, Öztürk S, Çalık P, Özdamar TH. Feeding strategy design for recombinant human growth hormone production by Bacillus subtilis. Bioprocess Biosyst Eng. 2015 Oct 24;38(10):1855–65.
40. Ye Y, Li Q, Fu G, Yuan G, Miao J, Lin W. Identification of Antifungal Substance (Iturin A2) Produced by Bacillus subtilis B47 and Its Effect on Southern Corn Leaf Blight. J Integr Agric. 2012;11(1):90–9.
41. Park Y-C, Kim S-G, Park K, Lee KH, Seo J-H. Fed-batch production of d-ribose from sugar mixtures by transketolasedeficient Bacillus subtilis SPK1. Appl Microbiol Biotechnol. 2004 Dec 16;66(3):297–302.
42. Chen X, Zhang C, Cheng J, Shi X, Li L, Zhang Z, et al. Enhancement of adenosine production by Bacillus subtilis CGMCC 4484 through metabolic flux analysis and simplified feeding strategies. Bioprocess Biosyst Eng. 2013 Dec 25;36(12):1851–9.
43. Yao S, Zhao S, Lu Z, Gao Y, Lv F, Bie X. Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Rev Argent Microbiol. 2015;47(4):344–9.
44. Sadfi N, Chérif M, Hajlaoui MR, Boudabbous A, Bélanger R. Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann Microbiol. 2002;52:323–37.
45. Ramírez LCC, Arévalo GZY, Moreno BVE. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova. 2014; 12(21).
46. Ramírez LCC, Leal LCS, Rodríguez FAE. Determinación de la presencia de bacterias patógenas para el humano en aguas de riego en la cuenca alta de la sabana de Bogotá; DC Colombia. Nova. 2014;12(22).
47. Corrales LC, Romero DMA, Macías JAB, Vargas AMC.
Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova. 2015;13(24):5582.


==========================================
DOI: http://dx.doi.org/10.22490/24629448.1751

Descargas

La descarga de datos todavía no está disponible.