Influencia de la fuente de carbono sobre la expresión de proteínas AOX1-reguladas en Pichia pastoris

Contenido principal del artículo

Autores

Raúl A. Poutou
Balkys E. Quevedo
Henrry A. Córdoba
Homero Sáenz Sáenz
Luis A. Barrera

Resumen

La levadura Pichia pastoris constituye un excelente modelo para la expresión de proteínas heterólogas, lo que se refleja en el gran número de proteínas que han sido obtenidas en este modelo biológico, bajo el control del promotor AOX1. Esto implica que el número de peroxisomas y la enzima alcohol oxidasa es regulada como respuesta a la inducción por metabolitos como el metanol, el glicerol, el etanol, el acetato y vías metabólica como la b-oxidación. En esta revisión, se discuten aspectos relacionados con el metabolismo de estos compuestos y su posible influencia en la producción de proteínas recombinantes, específicamente la Iduronato 2- sulfato sulfatasa humana (IDSh).

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1. Cregg J, Barringer K, Hessler A, Madden K. Pichia pastoris as a Host System for Transformations. Mol Cell Biol. 1985; 5 (12): 3376-85.

2. Cregg J, Vedvick T, Raschke W. Recent Advances in the Expression of Foreign Genes in Pichia pastoris. Bio/Technol. 1993; 11: 905-10.

3. Vedvick TS. Gene Expression in Yeast: Pichia pastoris. Curr Opin Biotech. 1991; 2: 742-45.

4. Wolf K. No conventional Yeast in Biotechnology. A Handbook. 1996; Berlin: Springer Verlag. 618 p.

5. Sreekrishna K, Kropp KE. Pichia pastoris, in Nonconventional Yeast in Biotechnology. A Handbook., K Wolf, Editor. 1996, Springer Verlag: Berlin. 203-53 p.

6. Couderc R, Baratti J. Oxidation of Methanol by the Yeast Pichia pastoris: Purification and Properties of Alcohol Oxidase. Agric Biol Chem. 1980; 44: 279-89.

7. Veenhuis M, Dijken JP, Harder W. The Significance of Peroxisomes in The Metabolism of One-Carbone Compounds in Yeast. Adv Microbiol Physiol. 1983; 24: 1-82.

8. Córdoba H, Algecira N, Poutou RA, Barrera LA. Pichia pastoris una Alternativa para la Producción de Glicoproteínas
Humanas de Uso Terapéutico. Estrategias de Fermentación. Rev Col Biotecnol. 2003; 5 (2): 73-84.

9. Barnett JA. Biochemical Differentiation of Taxa with Special Reference to the Yeast, in The Fungi, GC Ainsworth, AS
Sussman, Editors. 1968, Academic Press: London. 557-95p.

10. Barnett JA. The Nutritional Test in Yeast Systematics. J Gen Microbiol. 1977; 99: 183-90.

11. Barnett JA, Payne RW, Yarow D. Yeast: Characteristics and Identification. Cambridge: Cambridge University Press.1990.

12. Kurtzman CP. Synonymy of the Yeast Genera Hansenula and Pichia Demonstrated Through Comparisons of
Deoxyribonucleic Acis Relatedness. Antonie van Leeuwenhoek. J Microbiol.1984; 50: 209-17.

13. Spencer JFT, de Spencer ALR, Laluce C. Non-conventional yeasts. App Microbiol Biotechnol. 2002; 58: 147-56.

14. Kato K, Kurimura Y, Makiguchi N, Asai Y. Determination of Strongly Methanol Assimilating Yeast. J Genet App Microbiol. 1974; 20: 123-27.

15. Ogata K, Nishikawa H, Ohsugi M. A. Yeast Capable of Utilizing Methanol. Agricul Biol Chem. 1969; 33: 1319.

16. Invitrogen. Pichia Expression Kit. Protein Expression. A Manual of Methods for Expression of Recombinant Proteins in P. pastoris.Cat. No. K1710-01. 1996; California: Invitrogen.

17. Goul SJ, Mccollum D, Spong AP, Heyman JA, Subramani S. Development of the Yeast Pichia pastoris as a Model
Organism for a Genetic and Molecular Analysis of Peroxisomes Assembly. Yeast. 1992; 8: 613-28.

18. Wegner GH. Emerging Applications of the Methylotrophic Yeast. FEMS Microbiol Rev . 1983; 87: 279-84.

19. Raschke W, Neiditch BR, Hendricks M, Cregg JM. Inducible Expression of a Heterologous Protein in Hansenula
polymorpha Using the Alcohol Oxidase 1 Promoter of Pichia pastoris. Gene .1996; 177: 163-67.

20. Waterham HR, De Vries Y, Russell YA, Xie W, Veenhuis M, Cregg JM. The Pichia pastoris PER6 Gene Product Is a Peroxisomal Integral Membrane Protein Essential for Peroxisome Biogenesis and Has Sequence Similarity to the
Zellweger Syndrome Protein PAF-1. Mol Cell Biol. 1996; 16(5): 2527.36.

21. Gellisen G. Heterologous Protein Production in Methylotrophic Yeasts. App Microbiol Biotechnol. 2000; 54: 741-50.

22. Romanos M. Advances in The Use of Pichia pasrtoris for High-Level Gene Expression. Curr Opin Biotechnol.1995;
6: 527-33.

23. Clare JJ, Rayment FB, Ballnatine SP, Sreekrishna K, Romanos MA. High-level Expression of Tetanus Toxin Fragment C and Pichia pastoris Systems Containing Multiplety Tandem Integrations of the Gene. Bio/Technol.1991; 9: 445-60.

24. Cereghino JL, Cregg JM. Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris. FEMS Microbiol Rev. 2000; 24: 45-66.

25. Georgiou G, Valax P. Expression of Correctly Folded Proteins in E. coli. Curr Opin Biotechnol. 1996; 7: 190-97.

26. Li M, Hubálek F, Newton-Vinson P, Edmondson DE. High- Level Expression of Human Liver Monoamine Oxidase A in Pichia pastoris: Comparison with the Enzyme Expressed in Saccharomyces cerevisiae. Prot Exp Purif. 2002; 24: 152-
62.

27. Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM. Positive Selection of Novel Peroxisome Biogenesis-Defective Mutants of the Yeast Pichia pastoris. Genet. 1999; 151: 1379-91.

28. de Hoop MJ, Ab G. Import of Proteins Into Peroxisomes and Other Microbodies. Biochem J. 1992; 286: 657-69.

29. Glover JR, Andrews DW, Subramani S, Rachubinski RA. Mutagenesis of the Amino Targeting Signal of the
Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase Reveals Conserved Amino Acids Required for the Import Into Peroxisomes in vivo. J Biol Chem. 1994; 269: 7558-63.

30. Rachubinski RA, Subramani S. How Proteins Penetrate Peroxisomes. Cell. 1995; 83: 525-28.

31. Subramani S. Protein Import Into Peroxisomes and Biogenesis of the Oganelle. Ann Rev Cell Biol. 1993; 9: 445-78.

32. Bohinski RC. Bioquímica. Quinta Edición; Bogotá: Addison- Wesley Iberoamericana.1987.

33. Ren HT, Yuan JQ, Bellgardt KH. Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance. J Biotechnol. 2003; 106: 53-68.

34. Gancedo G, Gancedo JM, Sols A. Glycerol Metabolism in Yeast Pathways of Utilization and Production. Eur J Biochem. 1968; 5: 165-72.

35. Nevoigt E, Stahl U. Osmoregulation and Glycerol Metabolism in the Yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997; 21: 231-41.

36. Ratledge C. Biochemistry and Physiology of Growth and Metabolism, in Basic Biotechnology, C Ratledge, B
Kristiansen, Editors. 2001, Cambridge University Press: Cambridge. 17- 45p.

37. Inan M, Meagher MM. The Effect of Ethanol and Acetate on Protein Expression in Pichia pastoris. J Biosc Bioeng.
2001; 92 (4): 337-41.

38. Inan M, Meagher MM. Non-Repressing Carbon Sources for Alcohol Oxidase (AOX1) Promoter of Pichia pastoris. J Biosc Bioeng. 2001; 92 (6): 585-89.

39. Inan M, Chiruvolu V, Eskridge KM, Vlasuk GP, Dickerson K, Brown S, Meagher MM. Optimisation of Temperatureglycerol- pH Conditions for Fed-batch Fermentation Process for Recombinant Hookworm (Ancylostoma caninum) Anticoagulant Peptide (AcAP-5) Production by Pichia pastoris. Enz Microbiol Technol. 1999; 24: 438-45.

40. Chiruvolu V, Cregg JM, Meagher MM. Recombinant Protein Production in an Alcohol Oxidase-Defective Strain of Pichia pastoris in Feedbatch Fermentations. Enz Microbiol Technol. 1997; 21: 277-83.

41. Chiruvolu V, Eskridge KM, Cregg JM, Meagher MM. Effects of Glycerol Concentration and pH on Growth of Recombinant Pichia pastoris Yeast. App Biochem Biotechnol. 1999; 75:163-73.

42. Sulter GJ, Klei IJ, Schanstra JP, Harder W, Veenhuis M. Ethanol Metabolism in a Peroxisome Deficient Mutant of
the Yeast Hansenula polymorpha. FEMS Microbiol Let. 1991; 82: 297-302.

43. Tolstorukov IDEB, Benevolensky BD, Titorenko VI, Sibirny AA. Mutants of Methylotrophic Yeast Pichia pinus Defective in C2 Metabolism. Yeast. 1989; 3: 233-41.

44. Demain AL, Davies JE. Manual of Industrial Microbiology and Biotechnology; Washintong D.C., USA: Editorial ASM
Press. 400. 1996.

45. Murray WD, Duff SJB, Beveridge TJ. Catabolite Inactivation in the Methylotrophic Yeast Pichia pastoris. App Env Microbiol.1990; 56 (8): 2378-83.

46. Egli T, van Dijken JP, Veenhuis M, Harder W, Fiechter A. Methanol Metabolism in Yeast: Regulation of the Syntesis of Catbolic Enzymes. Arch Microbiol. 1980; 124: 115-21.

47. Holzer H. Catabolite Inactivation in Yeast. Trends Biochem Sci. 1976; 1: 176-81.

48. Veenhuis M, Zwart K, Harder W. Degradation of Peroxisomes After Transfer of Methanol-Grown Hansenula polymorpha Into Glucose-Containing Media. FEMS Microbiol Let. 1978; 3: 21-28.

49. Veenhuis M, Douma A, Harder W, Osumi M. Degradation and Turnover of Peroxisomes in the Yeast Hansenula
polymorpha Induced by Selective Inactivation of Peroxisomal Enzymes. Arch Microbiol. 1983; 134: 193-203.

50. Yuan W, Tuttle D, Shi Y, Ralph G, Dunn W. Glucose-induced Microautophagy in Pichia pastoris Requires the a-subunit of phosphofructokinase. J Cell Sci. 1997; 110: 1935-45.

51. Tuttle D, Dunn W. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci. 1995; 108: 25-35.

52. Yuan W, Strømhaug PE, Dunn WA. Glucose-induced Autophagy of Peroxisomes in Pichia pastoris Requires a Unique E1-like Protein. Mol Biol Cell. 1999; 10: 1353-66.

53. Waterham H, Russell K, De Vries Y, Cregg J. Peroxisomal Targeting, Import, and Assembly of Alcohol Oxidase in Pichia pastoris. The J Cell Biol. 1997; 139 (6): 1419-31.

54. Evers M, Harder W, Veenhuis M. In Vitro Dissociation and Re-assembly of Peroxisomal Alcohol Oxidases of Hansenula polymorpha and Pichia pastoris. FEBS Let. 1995; 368: 293-96.

55. Ellis S, Brust P, Koutz P, Waters A, Harpol M, Gingers T. Isolation of Alcohol Oxidase and two Other Methanol Regulable Genes from the Yeast. Pichia pastoris. Mol Cell Biol. 1985; 5: 1111-21.

56. Cregg J, Madden K, Barringer K, Thill G, Stillman C. Functional Characterization of the Two Alcohol Oxidase Genes
from the Yeast Pichia pastoris. Mol Cell Biol. 1989; 9 (3): 1316-23.

57. Koutz P, Davis G, Stillma C, Barringer K, Cregg J, Thill G. Structural Comparison of the Pichia pastoris Alcohol Oxidase Genes. Yeast. 1989; 5: 167-77.

58. Romanos M, Scorer C, Claret J. Foreign Gene Expression in Yeast: A Review. Yeast. 1992; 8: 423-88.

59. Ozimek P, van Dijk R, Latchev K, Gancedo C, Wang D, Van der Klei I, Veenhuis M. Pyruvate Carboxylase Is an Essential Protein in the Assembly of Yeast Peroxisomal Oligomeric Alcohol Oxidase. Mol Biol Cell. 2003; 14: 786-97.

60. Distel B, Veenhuis M, Tabak HF. Import of Alcohol Oxidase Into Peroxisomes of Saccharomyces cerevisiae. EMBO J. 1987; 6: 3111-16.

61. Van der Klei IJ, Veenhuis M, Nicolay K, Harder W. In vivo Inactivation of Peroxisomal Alcohol Oxidase in Hansenula polymorpha by KCN is a Irreversible Process. Arch Microbiol. 1989; 151: 26-33.

62. Van der Klei I, Sulter G, Harder W, Veenhuis M. Assembly of Alcohol Oxidase in the Cytosol of a Peroxisome-Deficient Mutant of Hansenula polymorpha-Properties of the Protein and Architecture of the Crystals. Yeast. 1991; 7: 195-209.

63. Cregg J, Tschopp J, Stillman C, Siegel R, Akong M, Craig W, Buckholz R, Madden K, Kellaris P, Davis G, Smiley B, Cruze J, Torregrossa R, Velicelebi G, Thill GP. High-level Expression and Efficient Assembly of Hepatitis B Surface Antigen in the Methylotrophic Yeast, Pichia pastoris. Bio/Technol. 1987; 5: 479-85.

64. Scorer CA. Rapid Selection Using G1418 of High Copy Number Transformants of P. pastoris for High-Level Foreign Gene Expression. Biotechnol.1994; 12:181-84.

65. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T. High-level Expression of
Recombinant Human Serum Albumin from the Methylotrophic Yeast Pichia pastoris with Minimal Protease Production and Activation. J Biosci Bioeng. 2000; 89 (1): 55-61.

66. Sibirny AA. Genetic Control of Methanol and Ethanol Metabolism in the Yeast Pichia pinus. in Procedings of 6th
International Symposium on Genetics of Industrial Microorganism. Strasbourg: Societe Francese Microbiologie.
1990.

67. Poutou RA, Córdoba H, Quevedo BE, Landázuri P, Echeverri OY, Sáenz H, Vanegas A, Acero J, Gónzalez A, Herrera J, Algesira N, Caicedo L, Barrera LA. Expresión de Iduronato 2-sulfato Sulfatasa Humana Recombinante (IDShr) en Pichia pastoris. Univ Scient. 2005; 10 (1): 73-94.

68. Córdoba H. Estudio de la Producción a Nivel de Laboratorio de la Enzima Iduronato 2-Sulfato Humana recombinante (IDShr) en Pichia pastoris. Facultad de Ingeniería Química. Maestría. Tesis 2004. Universidad Nacional de Colombia. Bogotá, D.C. 97 p.

69. Peña O, Sosa A, Echeverri O, Sáenz H, Barrera LA. Producción de Anticuerpos Policlonales IgG Contra la Proteína
Iduronato-2-sulfato Sulfatasa y Desarrollo de un Sistema de Detección para IDS Humana Recombinante. Bioméd. 2005; 25: 181-88.

70. Cereghino G, Cereghino J, Sunga A, Johnson M, Lim M, Gleeson M, Cregg J. New Selectable Marker/Auxotrophic Host Strain Combinations for Molecular Genetic Manipulation of Pichia pastoris. Gene. 2001; 263: 159-69.

71. Schuller H-J. Transcriptional Control of Nonfermentative Metabolism in the Yeast Saccharomyces cerevisiae. Curr
Genet. 2003; 43: 139-60.

72. Dyer JM, Chapital DC, Kuan JW, Mullen RT, Pepperman AB. Metabolic Engineering of Saccharomyces cerevisiae for Production of Novel Lipid Compounds. App Microbiol Biotechnol. 2002; 59: 224-30.
-------------------------------------------------------------------------------
DOI: http://dx.doi.org/10.22490/24629448.21

Descargas

La descarga de datos todavía no está disponible.