Skip to main navigation menu Skip to main content Skip to site footer

Polymerase Chain Reaction Optimization for Detection of gen B1 Optimización de PCR para el gen B1 de T. gondii

Optimización de la Reacción en Cadena de la Polimerasa para la Detección del gen B1 de T. gondii



How to Cite
Polymerase Chain Reaction Optimization for Detection of gen B1 Optimización de PCR para el gen B1 de T. gondii. (2014). NOVA, 12(22). https://doi.org/10.22490/24629448.1044

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Liliana Jazmín Cortés Cortés
    Diana Carolina Hernández Castro
      Mónica Mantilla
        María Isabel Medina
          Sofía Duque

            Objective: This study aimed to optimize the conditions B1 gene amplification (35 copies in the genome) for the detection of T gondii DNA in probable cases of cerebral toxoplasmosis. Materials y methods: DNA extraction was performed from the peritoneal exudate of mice inoculated with the RH strain of T. gon d ii obtaining an initial 17 mL to 1x10 7 parasites/mL. PCR conditions yielding B1 gene amplification of a fragment of 132 bp DNA obtained from serial dilutions from 1x106 to 1x10-1 parasites per ml were optimized, setting a limit of detection of 1 T. gon d ii tachyzoite. Resulted: B1 gene amplification of a fragment of 132 bp DNA obtained from serial dilutions from 1x10 6 to 1x10 -1 parasites per mL were optimized, setting a limit of detection of 1 T. gon d ii tachyzoite.

            Article visits 181 | PDF visits 93


            Downloads

            Download data is not yet available.
            1. Priest J, Moss D, Arnold B, Hamlin K, Jones C, Lammie P. Seroepidemiology of Toxoplasma in a coastal region of Haiti: multiplex bead assay detection of immunoglobulin G antibodies that recognize the SAG2A antigen. Epidemiol Infect. 2015; 143(3): 618-30. doi: http://dx.doi.org/10.1017/S0950268814001216.
            2. Ahmadpour E, Daryani A, Sharif M, Sarvi S, Aarabi M, Mizani A, et. al.Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis.J Infect Dev Ctries. 2014; 15(12):1503-10. doi: http://dx.doi.org/10.3855/jidc.4796.
            3. Meira C, Pereira-Chioccola V, Vidal J, de Mattos C, Motoie G, Costa-Silva TA, et. al.Cerebral and ocular toxoplasmosis related with IFN γ, TNF-, and IL-10 levels. Front Microbiol. 2014; 5:492. doi: http://dx.doi.org/10.3389/fmicb.2014.00492.
            4. Tonini R, Vidal J, Vera L. Molecular diagnosis of cerebral toxoplasmosis: comparing markers that determine Toxoplasma gondii by PCR in peripheral blood from HIV-infected patients The Brazilian Journal of Infectious Diseases. 2010; 14(4): 346-50.
            5. Anselmo L, Vilar F, Lima J, Yamamoto A, Bollela V, Takayanagui O. Usefulness and limitations of polymerase chain reaction in the etiologic diagnosis of neurotoxoplasmosis in immunocompromised patients. J Neurol Sci. 2014; 346 (1-2):231-4. doi: http://dx.doi.org/10.1016/j.jns.2014.08.034
            6. Resolución 458 de 2011, Instituto Nacional de Salud.
            7. Bretagne S, Costa JM, Vidaud M, Van Nhieu JT, Feith J. Detection of Toxoplasma gondii by Competitive DNA Amplification of Bronchoalveolar Lavage Samples. JID 1993;168 (6): 1585-88.
            8. Reishi U, Bretagne S, Kruger D, Ernault P, Costa JM: Comparison of two targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis. 2003; 3: 7 doi http://dx.doi.org/10.1186/1471-2334-37.
            9. Asgari Q, Keshavarz H, Shojaee S, Motazedian M, Mohebali M, Miri R, et al. In Vitro and In Vivo Potential of RH Strain of Toxoplasma gondii (Type I) in Tissue Cyst Forming. Iran J Parasitol. 2013; 8(3):367-75.
            10. Taravati P, Lam D, Van Gelder R. Role of molecular diagnostics in ocular microbiology. Curr Ophthalmol Rep. 2013;1(4). doi: http://dx.doi.org/10.1007/s40135-013-0025-1.
            11. Bourdin C, Busse A, Kouamou E, Touafek F, Bodaghi B, Le Hoang P, Mazier, et al. PCR-based detection of Toxoplasma gondii DNA in blood and ocular samples for diagnosis of ocular toxoplasmosis. J Clin Microbiol. 2014; 52(11):3987-91. doi: http://dx.doi.org/10.1128/JCM.01793-14.
            12. Xiao J, Gao G, Li Y, Zhang W, Tian Y, et al. Spectrums of Opportunistic Infections and Malignancies in HIV-Infected Patients in Tertiary Care Hospital, China. PLoS ONE. 2013; 8(10): e75915. doi: http://dx.doi.org/10.1371/journal.pone.0075915
            13. Cortés LJ, Duque S, López MC, Moncada D, Molina D, Gómez-Marín JE, Gunturiz ML. Gene polymorphisms in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes and structural modelling of the dhps gene in Colombian isolates of Toxoplasma gondii. Biomedica. 2014; 34(4):556-66, doi: http://dx.doi.org/10.1590/S0120-41572014000400008.
            14. ==========================================
            15. DOI: http://dx.doi.org/10.22490/24629448.1044
            Sistema OJS 3.4.0.5 - Metabiblioteca |