Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Complejo mayor de histocompatibilidad y desarrollo de vacunas

Mayor complex histocompatibility and vaccines development



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Estupiñán Torres, S. M., & Trujillo Gama, E. (2004). Complejo mayor de histocompatibilidad y desarrollo de vacunas. NOVA, 2(2). https://doi.org/10.22490/24629448.9

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Sandra Mónica Estupiñán Torres
    Esperanza Trujillo Gama

      Sin duda, las vacunas se constituyen en una alternativa viable y efectiva para el control de las enfermedadesinfectocontagiosas, sin embargo, una estrategia exitosa para el diseño de vacunas debe tener en consideración muchos de los aspectos de la respuesta inmune en una población heterogénea y en su forma de reconocer y presentar los antígenos de los patógenos. Por lo tanto, no solamente el entendimiento preciso de los mecanismos inmunes involucrados en la resistencia a infecciones sino la identificación de las moléculas del patógeno que son el blanco de respuesta protectora, serán motivo central de la investigación en vacunas en el futuro inmediato.  El presente artículo de revisión profundiza en el descubrimiento, ubicación, expresión, estructura, herencia, polimorfismo e importancia del complejo mayor de histocompatibilidad; además, presenta los avances en elo uso de primates como modelo para el desarrollo de vacunas.


      Visitas del artículo 232 | Visitas PDF 156


      Descargas

      Los datos de descarga todavía no están disponibles.
      1. Patarroyo ME, Romero P, Torres ML, Clavijo P, Moreno A, Martínez A, et al. Induction of protective immunity against
      2. experimental infection with malaria using synthetic peptides. Nature 1995; 328: 629-32.
      3. Zinkernagel RM, Doherty PC. Immunological surveillance against altered self-components by sensitized T lymphocytes in lymphocytic choriomeningitis. Nature1974; 215: 547-8.
      4. Doherty PC, Zinkernagel R. Enhanced immune surveillance in mice heterozygous at the H-2 gene complex. Nature 1975; 256: 50-2.
      5. Bugawan TL, Begovich AB, Erlich HA. Rapid HLA-DPB typing using enzymatically amplified DNA and nonradioactive
      6. sequence-specific oligonucleotide probes. Immunogenetics 1990; 32: 231-41.
      7. Vilches C, García-Pacheco JM, De Pablo R, Puente S, Kreiser M. Complete coding region of the new HLA-DQB1*0612 allele, obtained by RT-PCR. Tissue Antigens 1996; 48: 589-92.
      8. Craig MA, Elliot JF. HLA-DQA1 genotyping by bi-directional sequencing of PCR-amplified DNA spanning exon 2. Tissue Antigens 1997;49: 417-20.
      9. Buyse I, Decorte R, Baens M, Cuppens H, Semana G, Emonds MP, et al. Rapid DNA typing of class II HLA antigens using the polymerase chain reaction and reverse dot blot hibridization. Tissue Antigens 1993; 41: 1-14.
      10. Lobashevsky A, Smith J, Kasten-Jolly J, Horton H, Knapp L, Bontrop RE, et al. Identification of DRB alleles in rhesus monkeys using polymerase chain reaction-sequence-specificprimers (PCR-SSP) amplification. Tissue Antigens 1999;
      11. :254-63.
      12. McIlhatton B, Keating C, Curran M, McMullins M, Barr J, Madrigal A, et al. Identification of medically important
      13. pathogenic fungi by reference strand-mediated conformational analysis (RSCA). J. Med. Microbiol 2002; 51:468-78.
      14. Abbas A, Lichtman A. Complejo principal de histocompatibilidad. En: Inmunologia cellular y molecular. España:
      15. McGraw Hill Interamericana; 2000. p: 66-81.
      16. Villadangos JA. Presentation of antigens by MHC class II molecules: getting the most out of them. Molecular Immunology 2001; 38: 329-46.
      17. Mach B, Steimle V, Martinez-Soria E, Reith W. Regulation of MHC class II genes: Lessons from a disease. Annu.Rev.Immunol 1996; 14: 301-31.
      18. Bowers, W. Major Histocompatibility Complex (MHC), Disponible en: URL: http://www.med.sc.edu:85/bowers/mhc.htm
      19. Andersson G, Andersson L, Larhammar D, Rask L, Sigurdardóttir S. Simplifying genetic locus assignment of HLA-DRB genes. Immunology Today 1994; 15: 58-62
      20. Gyllensten UB, Erlich HA. MHC class II haplotypes and linkage, disequilibrium in primates. Human Immunolgy 1993; 36: 1-10.
      21. Anderssson G. Evolution of the human HLA-DR region. Frontiers in Bioscience 1998; 3: 739-45.
      22. Klein J. Origin of major histocompatibility complex polymorphism: The trans-species hypothesis. Human
      23. Immunology 1987; 19: 155-62.
      24. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen HLA-A2. Nature 1987; 329: 2506-12.
      25. Stern JL, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II
      26. protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368: 215-21.
      27. Dessen A, Lawrence M, Cupo S, Zaller D, Wiley DC. X-ray structure of HLA-DR4 (DRA*0101, DRB1*0401) complexed with a peptide from human collagen II. Immunity 1997; 7: 473-81.
      28. Smith K, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J. Exp. Med 1998; 188: 1511-20.
      29. Paul WE. Fundamental immunology. Chapter 8. Lippincott: Williams & Wilkins; 1999.
      30. Engelhard VH. Structure of peptides associated with class I and class II molecules. Annu. Rev. Immunol 1994; 12: 181-207.
      31. Buus S, Sette A, Colon S, Miles C, Grey H. The relation between major (MHC) restriction and the capacity of Ia to bind immunogenetic peptides. Science 1987; 235: 1353 - 7.
      32. Sadegh-Nasseri S, Stern L, Wiley D, Germain R. MHC class II function preserved by low-affinity peptide interactions preceding stable binding. Nature 1994; 370: 647-50.
      33. Calmus Y. Graft-versus-host disease following living donor liver transplantation: high risk when the donor is HLA-homozygous. J Hepatol 2004; 41:505-7.
      34. Laux G, Mytilineos J, Opelz G. Critical evaluation of the amino acid triplet-epitope matching concept in cadaver kidney transplantation. Transplantation 2004; 77:902-7. COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD Y DESARROLLO DE VACUNAS: 59 - 70
      35. Schaffer M, Aldener-Cannava A, Remberger M, Ringden O, Olerup O. Roles of HLA-B, HLA-C and HLA-DPA1
      36. incompatibilities in the outcome of unrelated stem-cell transplantation. Tissue Antigens 2003; 62: 243-50.
      37. Hill AV, Bennett S, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, et al. HLA, malaria and dominant protective associations. Parasitol Today 1992; 8:57.
      38. Liu C, Carrington M, Kaslow RA, Gao X, Rinaldo CR, Jacobson
      39. LP, et al. Lack of Associations Between HLA Class II Alleles and Resistance to HIV-1 Infection Among White, Non-Hispanic Homosexual Men. J Acquir Immune Defic Syndr 2004; 37:1313- 17.
      40. Fanning LJ, Kenny-Walsh E, Shanahan F. Persistence of hepatitis C virus in a white population: associations with human leukocyte antigen class 1. Hum Immunol 2004; 65:745-51.
      41. Balamurugan A, Sharma SK, Mehra NK. Human leukocyte antigen class I supertypes influence susceptibility and severity of tuberculosis. J Infect Dis 2004; 189:805-11.
      42. Inmunogenética en las enfermedades reumáticas. En: Reumatología pediátrica. Interamericana: McGraw-Hill; 1994.
      43. p 21-36.
      44. Zavazava N, Eggert F. MHC and behavior. Immunol Today 1997; 18 (1):8-10.
      45. Vargas LE, Parra CA, Salazar LM, Guzman F, Pinto M, Patarroyo ME. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6. Biochem Biophys Res Commun 2003; 307 (1):148-56.
      46. Klein J, Sato A, O’huigin C. Evolution by gene duplication in the major histocompatibility complex. Cytogenet. Cell. Genet 1998; 80: 123-7.
      47. Voss G, Manson K, Montefiori D, Watkins DI, Heeney J. Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine. J Virol 2003; 77:1049-58.
      48. Gramzinski RA, Brazolot Millan CL, Obaldia N, Hoffman SL, Davis HL. Immune response to a hepatitis B DNA vaccine in Aotus monkeys: A comparison of vaccine formulation, route, and method of administration. Mol. Med1998; 4: 109-18.
      49. Colllins WE. The owl monkey as a model for malaria. In Aotus: the owl monkey. Baer JF, Weller RE and Kahoma I. editors. New York: Academic Press; 1994. p. 217-244.
      50. Antunes SG, De Groot NG, Brok H, Doxiadis G, Menezes AL. Otting N, et al. The common marmoset: a New World primate species with limited MHC class II variability. Proc. Natl. Acad. Sci 1998; 95: 11745-50.
      51. Trtkova K, Kupfermann H, Grahovac B, Mayer WE, O’huigin C, Tichy H, et al. MHC-DRB genes of Platyrrhini primates. Immunogenetics 1993; 38: 210-22.
      52. Suarez CF, Cardenas PP, Llanos-Ballestas EJ, Martinez P, Obregon M, Patarroyo ME, et al. Alpha1 and alpha2 domains of Aotus MHC class I and Catarrhini MHC class Ia share similar characteristics. Tissue Antigens 2003; 61:362-73.
      53. Díaz-Arévalo D, Naegeli M, Rodriguez R, Niño-Vasquez JJ, Moreno A; Patarroyo ME, et al. Sequence and diversity of MHC-DQA and –DQB genes of Aotus nancymaae, a primate model for vaccine development. Immunogenetics 2000; 51:528-532
      54. Diaz D, Daubenberger CA, Zalac T, Rodriguez R, Patarroyo ME. Sequence and expression of MHC-DPB1 molecules of the New World monkey Aotus nancymaae, a primate model for Plasmodium falciparum. Immunogenetics 2002; 54:251-9.
      55. Niño-Vásquez JJ, Vogel D, Rodríguez R, Moreno A, Patarroyo ME, Pluschke G,et al. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria. Immunogenetics 2000; 51: 219- 30.
      56. Vecino W, Daubenberger C, Rodrigue ZR, Moreno A, Patarroyo M, Plushcke G. Sequence and diversity of T-cell receptor bchain V and J genes of the owl monkey Aotus nancymaae. Immunogenetics 1999; 49: 792-99.
      57. Guerrero JE, Pacheco DP, Suarez CF, Martinez P, Aristizabal F, Moncada CA, et al. Characterizing T-cell receptor gammavariable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens 2003; 62:472-82.
      58. Hernández EC, Suárez CF, Méndez JA, Echeverri SJ, Murillo LA, Patarroyo ME. Identification, cloning, and sequencing of different cytokine genes in four species of owl monkey. Immunogenetics 2002; 54: 645-53.
      59. Diaz O, Daubenberger CA, Rodríguez R, Naegeli M, Moreno A, Patarroyo ME, et al. Immunoglobulin kappa light-chain V, J, and C gene sequences of the owl monkey Aotus nancymaae. Immunogenetics 2000; 51: 212-18.
      60. Castillo F, Guerrero C, Trujillo E, Delgado G, Martinez P, Salazar LM, et al. Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics 2004; 56: 480-89.
      61. Montoya GE, Vernot JP, Patarroyo ME. Comparative analysis of CD45 proteins in primate context: owl monkeys vs. humans. Tissue Antigens 2004; 64:165-72
      62. -------------------------------------------------------------------------------
      63. DOI: http://dx.doi.org/10.22490/24629448.9
      Sistema OJS 3.4.0.5 - Metabiblioteca |