Systematic review and bibliometric analysis of the metabolome found in human breast milk from healthy and gestational diabetes mellitus mothers

Contenido principal del artículo

Resumen

Introduction. Human breast milk is considered the gold standard of nutrition, given that thanks to the diversity in the metabolome it manages to meet the individual needs of each infant by providing essential metabolites that contribute to and intervene in optimal growth and development. Few factors can modify the composition of breast milk and, simultaneously, its benefits. However, the increase in maternal metabolic diseases such as gestational diabetes mellitus raises the question of whether it can be one of the factors that condition the quality and quantity of metabolites contained in breast milk. Objective. To identify the metabolome of breast milk from healthy mothers, its influence on the growth and development of the infant, and to recognize those that are altered because of gestatio- nal diabetes mellitus. Methodology. A systematic review was carried out using multiple databases. For the bibliometric analysis, we used the results of Web of Science and Scopus and the Tree of Science and Bibliometrix software.

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nature Biotechnology [Internet]. 2000;18(11):1157–61. Available from: http://www.nature. com/nbt/journal/v18/n11/full/nbt1100_1157.html

Cesare F, Dessì A, Corbu S, Reali A, Fanos V. Clinical impact of human breast milk metabolomics. Clinica Chimica Acta [Internet]. 2015; Available from: http://dx.doi. org/10.1016/j.cca.2015.02.021

Cesare F, Dessì A, Corbu S, Reali A, Fanos V. Clinica Chimica Acta Clinical impact of human breast milk metabolomics. Clinica Chimica Acta [Internet]. 2015; Available from: http://dx.doi.org/10.1016/j.cca.2015.02.021

Marincola FC, Noto A, Caboni P, Reali A, Barberini L, Lussu M, et al. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: Preliminary results. Journal of Maternal-Fetal and Neonatal Medicine. 2012;25(SUPPL. 5):62–7.

Dessí A, Briana D, Corbu S, Gavrili S, Marincola FC, Georgantzi S, et al. Metabolomics of Breast Milk : The Importance of Phenotypes. Metabolites. 2018;1–10.

Fanos V, Pintus R, Reali A, Dessì A. Miracles and mysteries of breast milk: From Egyptians to the 3 M’s (Metabolomics, Microbiomics, Multipotent stem cells). Journal of Pediatric and Neonatal Individualized Medicine. 2017;6(2):5–9.

Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyon. The Journal of Nutritional Biochemistry [Internet]. 2017; Available from: https://doi.org/10.1016/j. jnutbio.2017.10.004

Ling C, Ro T. Review Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metabolism. 2019;1–17.

Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. American Journal of Clinical Nutrition. 2019;110(1):111–20.

Wen L. et al. Gestational Diabetes Mellitus Changes the Metabolomes of Human Colostrum , Transition Milk and Mature Milk. Medicine Science Monitor. 2019;6128–52.

Quintanilla Rodriguez BS MH. Gestational Diabetes. [Internet]. StatPearls. 2020. Available from: https://www. statpearls.com/articlelibrary/viewarticle/22231/

Ruiz-hoyos BM, Londoño-franco ÁL, Ramírez-Aristizábal RA. Prevalencia de diabetes mellitus gestacional por curva de tolerancia prevalence of gestational diabetes mellitus based on glucose tolerance test on weeks 24 to 28 . Prospective cohort in Armenia, Colombia , 2015-2016. Revista Colombiana de Obstetricia y Ginecología. 2018;69(2):108–16.

Hurtado-Marín VA, Agudelo-Giraldo JD, Robledo S, Restrepo-Parra E. Analysis of dynamic networks based on the Ising model for the case of study of co-authorship of scientific articles. Scientific Reports [Internet]. 2021;11(1):1–10. Available from: https://doi.org/10.1038/s41598-021- 85041-8

Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics. 2017 Nov 1;11(4):959–75.

Valencia-Hernández DS, Robledo S, Pinilla R, Duque- Méndez ND, Olivar-Tost G. Sap algorithm for citation analysis: An improvement to tree of science. Ingenieria e Investigacion. 2020;40(1):45–9.

Zuluaga M, Robledo S, Osorio-Zuluaga GA, Yathe L, Gonzalez D, Taborda1 G. Metabolomics and pesticides: systematic literature review using graph theory for analysis of references Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova [Internet]. 2016;121–38. Available from: https://gephi.github.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008 Oct 9;2008(10):P10008.

Peng K, Deng J, Gong Z, Qin B. Characteristics and development trends of ecohydrology in lakes and reservoirs: Insights from bibliometrics. Ecohydrology. 2019 Apr 1;12(3).

Duque P, Cervantes-Cervantes LS. University social responsibility: A systematic review and a bibliometric analysis. Estudios Gerenciales. 2019;35(153):451–64.

Spevacek AR, Smilowitz JT, Chin EL, Underwood MA, German JB, Slupsky CM. Infant maturity at birth reveals minor differences in the maternal milk metabolome in the first month of lactation. Journal of Nutrition. 2015;145(8):1–11.

Ballard O, Morrow AL. Human Milk Composition. Nutrients and Bioactive Factors. Pediatric Clinics of North America. 2013;60(1):49–74.

Bardanzellu F, Fanos V, Peroni DG. Human Breast Milk : Bioactive Components , from Stem Cells to Health Outcomes. Current Nutrition Report. 2020;9:1–13.

Qian L, Zhao A, Zhang Y, Chen T, Zeisel SH, Jia W. Metabolomic Approaches to Explore Chemical Diversity of Human Breast-Milk , Formula Milk and Bovine Milk. International Journal of Molecular Sciences Article. 2016;17(2128):1–16.

Sillner N, Walker A, Lucio M, Maier T v., Bazanella M, Rychlik M, et al. Longitudinal Profiles of Dietary and Microbial Metabolites in Formula- and Breastfed Infants. Frontiers in Molecular Biosciences. 2021;8(May):1–14.

López TIB, Cañedo MC, Oliveira FMP, Alcantara GB. Toward precision nutrition: Commercial infant formulas and human milk compared for stereospecific distribution of fatty acids using metabolomics. OMICS A Journal of Integrative Biology. 2018;22(7):484–92.

Garwolińska D, Hewelt-Belka W, Kot-Wasik A, Sundekilde UK. Nuclear magnetic resonance metabolomics reveals qualitative and quantitative differences in the composition of human breast milk and milk formulas. Nutrients. 2020;12(4).

WuR,ChenJ,ZhangL,WangX,YangY,RenX.LC/MS based metabolomics to evaluate the milk composition of human , horse , goat and cow from China. European Food Research and Technology [Internet]. 2021;247(3):663–75. Available from: https://doi.org/10.1007/s00217-020- 03654-1

Phan M, Momin SR, Senn MK, Wood AC. Metabolomic Insights into the Effects of Breast Milk Versus Formula Milk Feeding in Infants. Current Nutrition Reports. 2019;8(3):295–306.

Slupsky CM. Metabolomics in Human Milk Research. Nestle Nutrition Institute Workshop Series. 2019;90:179–90.

Okunola AO, Cacciatore S, Nicol MP, Toit E. The Determinants of the Human Milk Metabolome and Its Role in Infant Health. Metabolites. 2020;10:2–16.

Kortesniemi M, Slupsky CM, Aatsinki AK, Sinkkonen J, Karlsson L, Linderborg KM, et al. Human milk metabolome is associated with symptoms of maternal psychological distress and milk cortisol. Food Chemistry. 2021;356(November 2020):129628.

Gómez-Gallego C, Morales JM, Monleón D, du Toit E, Kumar H, Linderborg KM, et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota. Nutrients. 2018;10(10).

LiK,JiangJ,XiaoH,WuK,QiC,SunJ,etal.Changes in the metabolite profile of breast milk over lactation stages and their relationship with dietary intake in Chinese women: HPLC-QTOFMS based metabolomic analysis. Food and Function. 2018;9(10):5189–97.

Khandelwal P, Andersen H, Romick-Rosendale L, Taggart CB, Watanabe M, Lane A, et al. A Pilot Study of Human Milk to Reduce Intestinal Inflammation after Bone Marrow Transplant. Breastfeeding Medicine. 2019;14(3):193–202.

Zimmermann P, Curtis N. Breast milk microbiota: A review of the factors that influence composition. Journal of infection. 2020;81:17–47.

Bardanzellu F, Fanos V, Strigini FAL, Artini PG. Human Breast Milk : Exploring the Linking Ring Among Emerging Components. Fromtiers in pediatrics. 2018;6(August):1–9.

Jeong H, Kyoung S, Ra M. Early Human Development The relationship between exclusive breastfeeding and infant development : A. Early Human Development [Internet]. 2018;127(August):42–7. Available from: https://doi. org/10.1016/j.earlhumdev.2018.08.011

Smilowitz JT, O’Sullivan A, Barile D, German JB, Lönnerdal B, Slupsky CM. The human milk metabolome reveals diverse oligosaccharide profiles. Journal of Nutrition. 2013;143(11):1709–18.

Salamanca Grosso G, Osorio Tangarife MP, Romero Acosta KF. Calidad fisicoquímica y microbiológica de la leche materna de madres donantes colombianas. Revista chilena de nutrición. 2019;46(4):409–19.

Shenker NS, Perdones-Montero A, Burke A, Stickland S, McDonald JAK, Alexander-Hardiman K, et al. Metabolomic and metataxonomic fingerprinting of human milk suggests compositional stability over a natural term of breastfeeding to 24 months. Nutrients. 2020;12(11):1–19.

Quitadamo PA, Palumbo G, Cianti L, Lurdo P, Gentile MA VA. The Revolution of Breast Milk: The Multiple Role of Hu- man Milk Banking between Evidence and Experience—A Na- rrative Review. Int J Pediatr [Internet]. 2021; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872774/

Chetwynd AJ, Dunn WB, Rodriguez-Blanco G. Collection and Preparation of Clinical Samples for Metabolomics. In: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY. 2017. p. 19–44.

Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. Journal of Separation Science. 2021;44(1):211–46.

Leeuwen SS van. Challenges and Pitfalls in Human Milk Oligosaccharide Analysis. Nutrients. 2019;11(2684):1–21.

García A, López-Gonzálvez Á, Godzien J, Barbas C. Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Methods in Molecular Biology. 2019;1978:55–77.

Mosca F, Giannì ML. Human milk : composition and health benefits. La Pediatria Medica e Chirurgica. 2017;39:47–52.

Gomez-Campos R, Arruda M, Luarte-Rocha C, Urra Albornoz C, Fierro AA-, Cossio-Bolaños M. Enfoque teórico del crecimiento físico de niños y adolescentes. Revista Española de Nutrición Humana y Dietética. 2016;20(3):244–53.

Vendelbo M, Anni L, Christian L, Michaelsen KF. Breastfeeding , Breast Milk Composition , and Growth Outcomes. Nestlé Nutr Inst Workshop. 2018;89:63–77.

Jim AI, Mar R, Rodr MV, Herrero JR. De lactante a niño. Alimentación en diferentes etapas. Nutrición Hospitalaria. 2017;34:3–7.

Yieh C, Bloomfield FH, O’Sullivan JM. Factors Affecting Gastrointestinal Microbiome Development in Neonates. Nutrients. 2018;1–17.

Biddulph C, Holmes M, Kuballa A, Davies PSW, Koorts P, Carter RJ, et al. Human milk oligosaccharide profiles and associations with maternal nutritional factors: A scoping review. Nutrients. 2021;13(3):1–20.

Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. Journal of Functional Foods [Internet]. 2020;72(February):104074. Available from: https://doi. org/10.1016/j.jff.2020.104074

Berger PK, Plows JF, Jones RB, Alderete TL, Yonemitsu C, Poulsen M, et al. Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS ONE [Internet]. 2020;15(2):1– 12. Available from: http://dx.doi.org/10.1371/journal. pone.0228323

Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology. 2017;52(1).

Brenmoehl J, Ohde D, Wirthgen E, Hoeflich A. Cytokines in milk and the role of TGF-beta. Best Practice and Research: Clinical Endocrinology and Metabolism. 2018;32(1):47–56.

Torres-Castro P, Abril-Gil M, Rodríguez-Lagunas MJ, Castell M, Pérez-Cano FJ, Franch À. TGF-β2, EGF, and FGF21 growth factors present in breast milk promote mesenteric lymph node lymphocytes maturation in suckling rats. Nutrients. 2018;10(9).

Sundekilde UK, Downey E, O’Mahony JA, O’Shea CA, Ryan CA, Kelly AL, et al. The effect of gestational and lactational age on the human milk metabolome. Nutrients. 2016;8(5):1–15.

Alexandre-Gouabau MC, Moyon T, David-Sochard A, Fenaille F, Cholet S, Royer AL, et al. Correction: Comprehensive preterm breast milk metabotype associated with optimal infant early growth pattern (Nutrients, (2019), 11, 528, 10.3390/ nu11030528). Nutrients. 2020;12(1):10–3.

Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The molecular and physiological effects of protein-derived polyamines in the intestine. Nutrients. 2020;12(1):1–18.

Volk N, Lacy B. Anatomy and Physiology of the Small Bowel. Gastrointestinal Endoscopy Clinics of North America [Internet]. 2017;27(1):1–13. Available from: http://dx.doi. org/10.1016/j.giec.2016.08.001

van Sadelhoff JHJ, Wiertsema SP, Garssen J, Hogenkamp A. Free Amino Acids in Human Milk: A Potential Role for Glutamine and Glutamate in the Protection Against Neonatal Allergies and Infections. Frontiers in Immunology. 2020;11(May):1–14.

Kim MH, Kim H. The roles of glutamine in the intestine and its implication in intestinal diseases. International Journal of Molecular Sciences. 2017;18(5).

Wu J, Domellöf M, Zivkovic AM, Larsson G, Öhman A, Nording ML. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation. Biochemical and Biophysical Research Communications. 2016;469(3):626–32.

Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. International Journal of Molecular Sciences. 2019;20(6).

Donovan SM. Human Milk Proteins: Composition and Physiological Significance. Nestle Nutrition Institute Workshop Series. 2019;90:93–101.

Cacho NT, Lawrence RM. Innate immunity and breast milk. Frontiers in Immunology. 2017;8(MAY).

Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk - A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. Journal of Agricultural and Food Chemistry. 2018;66(45):11881–96.

Neal-Kluever A, Fisher J, Grylack L, Kakiuchi-Kiyota S, Halpern W. Physiology of the neonatal gastrointestinal system relevant to the disposition of orally administered medications. Drug Metabolism and Disposition. 2019;47(3):296–313.

Palmeira P, Carneiro Samparo M. Immunology of breast milk. Classical and Quantum Gravity. 2016;18(21):4477–92.

Bardanzellu F, Fanos V, Reali A. Omics in human colostrum and mature milk: Looking to old data with new eyes. Nutrients. 2017;9(8).

di Benedetto MG, Bottanelli C, Cattaneo A, Pariante CM, Borsini A. Nutritional and immunological factors in breast milk: A role in the intergenerational transmission from maternal psychopathology to child development. Brain, Behavior, and Immunity [Internet]. 2020;85(January):57–68. Available from: https://doi.org/10.1016/j.bbi.2019.05.032

Fanos V. Metabolomics, milk-oriented microbiota (MOM) and multipotent stem cells: the future of research on breast milk. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM). 2015;4(1):e040115.

Faa G, Fanos V, Puddu M, Reali A, Dessì A, Pichiri G, et al. Breast milk stem cells: Four questions looking for an answer. Journal of Pediatric and Neonatal Individualized Medicine. 2016;5(2).

Kim KU, Kim WH, Jeong CH, Yi DY, Min H. More than nutrition: Therapeutic potential of breast milk-derived exosomes in cancer. International Journal of Molecular Sciences. 2020;21(19):1–17.

Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, van’t Land B, et al. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11(May).

Lindahl IEI, Artegoitia VM, Downey E, O’mahony JA, O’shea CA, Ryan CA, et al. Quantification of human milk phospholipids: The effect of gestational and lactational age on phospholipid composition. Nutrients. 2019;11(2):1–14.

Shoji H, Shimizu T. Effect of human breast milk on biological metabolism in infants. Pediatrics International. 2019;61(1):6–15.

O’Donnell VB, Rossjohn J, Wakelam MJO. Phospholipid signaling in innate immune cells. Journal of Clinical Investigation. 2018;128(7):2670–9.

Nazmi A, Greer MJ, Hoek KL, Piazuelo MB, Weitkamp J-H, Olivares-Villagómez D. Osteopontin and iCD8β Cells Promote Intestinal Intraepithelial Lymphocyte Homeostasis. The Journal of Immunology. 2020;204(7):1968–81.

Biddulph C, Holmes M, Kuballa A, Davies PSW, Koorts P, Carter RJ, et al. Human milk oligosaccharide profiles and associations with maternal nutritional factors: A scoping review. Nutrients. 2021;13(3):1–20.

Koletzko B. Human milk lipids. Annals of Nutrition and Metabolism. 2017;69(2):28–40.

Prentice P, Ong KK, Schoemaker MH, van Tol EAF, Vervoort J, Hughes IA, et al. Breast milk nutrient content and infancy growth. Acta Paediatrica, International Journal of Paediatrics. 2016;105(6):641–7.

Gaitán A V., Wood JAT, Zhang F, Makriyannis A, Lammi- Keefe CJ. Endocannabinoid metabolome characterization of transitional and mature human milk. Nutrients. 2018;10(9):6–13.

Gridneva Z, Rea A, Tie WJ, Lai CT, Kugananthan S, Ward LC, et al. Carbohydrates in human milk and body composition of term infants during the first 12 months of lactation. Nutrients. 2019;11(7).

Nilsson A, Mardinoglu A, Nielsen J. Predicting growth of the healthy infant using a genome scale metabolic model. npj Systems Biology and Applications [Internet]. 2017;3(1):1–8. Available from: http://dx.doi.org/10.1038/s41540-017-0004-5

Kratzsch J, Bae YJ, Kiess W. Adipokines in human breast milk. Best Practice and Research: Clinical Endocrinology and Metabolism [Internet]. 2018;32(1):27–38. Available from: https://doi.org/10.1016/j.beem.2018.02.001

Zepf FD, Rao P, Moore J, Stewart R, Ladino YM, Hartmann BT. Human breast milk and adipokines - A potential role for the soluble leptin receptor (sOb-R) in the regulation of infant energy intake and development. Medical Hypotheses [Internet]. 2016;86:53–5. Available from: http://dx.doi. org/10.1016/j.mehy.2015.11.014

Castillo-Castañeda PC, García-González A, Bencomo-Alvarez AE, Barros-Nuñez P, Gaxiola-Robles R, Méndez-Rodríguez LC, et al. Micronutrient content and antioxidant enzyme activities in human breast milk. Journal of Trace Elements in Medicine and Biology [Internet]. 2019;51:36–41. Available from: https://doi.org/10.1016/j.jtemb.2018.09.008

Cerdó T, Diéguez E, Campoy C. Infant growth, neurodevelopment and gut microbiota during infancy: Which nutrients are crucial? Current Opinion in Clinical Nutrition and Metabolic Care. 2019;22(6):434–41.

Brill RW, Horodysky AZ, Place AR, Larkin MEM, Reimschuessel R. Effects of dietary taurine level on visual function in European sea bass (Dicentrarchus labrax). PLoS ONE. 2019;14(6):1–18.

Fanos V, Pintus R, Dessì A. Clinical Metabolomics in Neonatology: From Metabolites to Diseases. Neonatology. 2018;113(4):406–13.

Shoji H, Taka H, Kaga N, Ikeda N, Hisata K, Miura Y, et al. Choline-related metabolites influenced by feeding patterns in preterm and term infants. Journal of Maternal-Fetal and Neonatal Medicine. 2020;33(2):230–5.

Kovacs CS. Calcium, phosphorus, and bone metabolism in the fetus and newborn. Early Human Development [Internet]. 2015;91(11):623–8. Available from: http:// dx.doi.org/10.1016/j.earlhumdev.2015.08.007

Bae YJ, Kratzsch J. Vitamin D and calcium in the human breast milk. Best Practice and Research: Clinical Endocrinology and Metabolism [Internet]. 2018;32(1):39–45. Available from: https://doi.org/10.1016/j.beem.2018.01.007

Arteaga I, Chala C, Hernández F, Luna J, Zapata C. Estado nutricional y neurodesarrollo en la primera infancia Nutritional Status and Neurodevelopment in Early Childhood. Rev Cubana Salud Pública [Internet]. 2018;44(4):169–85. Available from: https://www.scielosp. org/article/rcsp/2018.v44n4/169-185/

Cas D, Med JT, Cas MD, Paroni R, Signorelli P, Mirarchi A, et al. Human breast milk as source of sphingolipids for newborns : comparison with infant formulas and commercial cow ’ s milk. Journal of Translational Medicine [Internet]. 2020;1–13. Available from: https://doi.org/10.1186/ s12967-020-02641-0

Innis SM, Gilley J, Werker J. Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? Journal of Pediatrics. 2016;139(4):532–8.

Guillermo, Daniotti JL. Dinámica del transporte intracelular: Una relación mutua entre lípidos y proteínas. 2018;1–12.

Hahn-Holbrook J, Saxbe D, Bixby C, Steele C, Glynn L. Human milk as “chrononutrition”: implications for child health and development. Pediatric Research [Internet]. 2019;85(7):936–42. Available from: http://dx.doi. org/10.1038/s41390-019-0368-x

Chawla D. Taurine and Neonatal Nutrition. Indian Journal of Pediatrics. 2018;85(10):829.

Descamps B, Saif J, Benest A v., Biglino G, Bates DO, Chamorro-Jorganes A, et al. BDNF (Brain-Derived Neurotrophic Factor) promotes embryonic stem cells differentiation to endothelial cells via a molecular pathway, including MicroRNA-214, EZH2 (Enhancer of Zeste Homolog 2), and eNOS (Endothelial Nitric Oxide Synthase). Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(9):2117–25.

Notaras M, van den Buuse M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist. 2019;25(5):434–54.

Peila C, Gazzolo D, Bertino E, Cresi F, Coscia A. Influence of diabetes during pregnancy on human milk composition. Nutrients. 2020;12(1).

Ayanlaja AA, Zhang B, Ji GQ, Gao Y, Wang J, Kanwore K, et al. The reversible effects of glial cell line–derived neurotrophic factor (GDNF) in the human brain. Seminars in Cancer Biology [Internet]. 2018;53(July):212–22. Available from: https://doi.org/10.1016/j.semcancer.2018.07.005

Dror DK, Allen LH. Overview of nutrients in humanmilk. Advances in Nutrition. 2018;9(June):278S-294S.

Shapira D, Mandel D, Mimouni FB, Moran-Lev H, Marom R, Mangel L, et al. The effect of gestational diabetes mellitus on human milk macronutrients content. Journal of Perinatology [Internet]. 2019;39(6):820–3. Available from: http://dx.doi.org/10.1038/s41372-019-0362-5

Dritsakou K, Liosis G, Valsami G, Polychronopoulos E, Skouroliakou M. The impact of maternal- and neonatal- associated factors on human milk’s macronutrients and energy. Journal of Maternal-Fetal and Neonatal Medicine. 2017;30(11):1302–8.

Yu X, Rong SS, Sun X, Ding G, Wan W, Zou L, et al. Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: A longitudinal study. British Journal of Nutrition. 2018;120(12):1380–7.

Fatima SS, Khalid E, Ladak AA, Ali SA. Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. Journal of Maternal-Fetal and Neonatal Medicine [Internet]. 2019;32(18):2993–9. Available from: https://doi.org/10.1080/14767058.2018.1454422

Ustebay S, Baykus Y, Deniz R, Ugur K, Yavuzkir S, Yardim M, et al. Chemerin and Dermcidin in Human Milk and Their Alteration in Gestational Diabetes. Journal of Human Lactation. 2019;35(3):550–8.

Descargas

La descarga de datos todavía no está disponible.