Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Chemodrug resistance: Cancer’s fight for survival

Chemodrug resistance: Cancer’s fight for survival



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Alcántara Colin, J., Sandoval Cabrera, A., Martinez Quintero, D. A., & Santillán Benítez, J. G. (2023). Chemodrug resistance: Cancer’s fight for survival. REVISTA NOVA , 21(41). https://doi.org/10.22490/24629448.7535

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Jafet Alcántara Colin

    Antonio Sandoval Cabrera

      Daniel Alejandro Martinez Quintero

        Jonnathan Guadalupe Santillán Benítez


          Introduction. Chemoresistance is a multifactorial phenomenon implicated in all failed therapies and accounts for 90% of all cancer deaths and 30% of relapses. Objective. To understand the genetic mechanisms by which cancer cells acquire resistance to chemo drugs. Methodology. A non-systematic review study was carried out, in which genes and proteins involved in chemoresistance were searched using the terms “Cancer Drug resis- tance [Title/Abstract]”. From the articles obtained, highly involved genes, emerging genes, and proteins related to resistance were recognized. To obtain more specific information about genes, their interactions, and proteins associated with metabolism, the tools “The Human Protein Atlas”, “STRING CONSORTIUM 2022,” and The Small Molecule Pa- thway Database were used for their review. Results. From this review it was found that there are genes highly related to resistance such as: ABCA3, ABCB1, ABCB2, ABCC1, ABCC2, ABCG2, CYP2D6, CYP3A4, GSTA1. Recently recognised genes such as: FOXO3, FOXM1, Skp2, Snail, Twist1, ZEB1 and SLCO1B3. Conclusions. It is necessary to taking account new approaches related to cancer treatments considering chemoresistence and the genes related to the resistence.


          Visitas del artículo 154 | Visitas PDF 69


          Descargas

          Los datos de descarga todavía no están disponibles.

          Cáncer hoy [Internet]. [accessed 31 de marzo de 2023]. Available: https://gco.iarc.fr/today/about

          Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. 2020 May 2;21(9):3233. doi: 10.3390/ijms21093233. PMID: 32370233; PMCID: PMC7247559.

          Wilson BE, Jacob S, Yap ML, Ferlay J, Bray F, Barton MB. Estimates of global chemotherapy demands and corresponding physician workforce requirements for 2018 and 2040: a population-based study. Lancet Oncol. 2019 Jun;20(6):769-780. doi: 10.1016/S1470-2045(19)30163- 9. Epub 2019 May 8. Erratum in: Lancet Oncol. 2019 Jul;20(7):e346. PMID: 31078462.

          Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141- 160. doi: 10.20517/cdr.2019.10. Epub 2019 Jun 19. PMID: 34322663; PMCID: PMC8315569.

          Sritharan S, Sivalingam N. A comprehensive review on time- tested anticancer drug doxorubicin. Life Sci. 2021 Aug 1; 278:119527. doi:10.1016/j.lfs.2021.119527. Epub 2021 Apr 20. PMID: 33887349.

          Definición de resistencia a los medicamentos - Diccionario de cáncer del NCI - NCI [Internet]. [accessed March 31/2023]. Available in : https://www.cancer.gov/publications/ dictionaries/cancer-terms/def/drug-resistance

          LOURIE EM. A sketch of the history of chemotherapy. Br Med Bull. 1946;4(4):243-8. doi: 10.1093/oxfordjournals. bmb.a072785. PMID: 20281774.

          García-Sánchez JE, García E, Lucila Merino M. Cien años de la bala mágica del Dr. Ehrlich (1909–2009). Enferm Infecc Microbiol Clin. el 1 de octubre de 2010;28(8):521–33. DOI: 10.1016/j.eimc.2009.07.009

          De las cadenas laterales a la radioterapia de diana [Internet]. [accessed March 31/2023]. Available in: http:// scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 084X2016000100009

          Akatsu S, Noguchi H.the drug-fastness of spirochetes to arsenic, mercurial, and iodide compounds in vitro. J Exp Med. 1917 Mar 1;25(3):349-62. doi: 10.1084/jem.25.3.349. PMID: 19868093; PMCID: PMC2125488.

          1DE LA TORRE MORALI M. El tratamiento del cancer por agentes químicos [Cancer treatment by chemical agents]. Prog Med Rev Asoc Med Latinoam. 1945 Nov-Dec;6:18-24. Spanish. PMID: 20986277.

          SCHERER WF, SYVERTON JT, GEY GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953 May;97(5):695- 710. doi: 10.1084/jem.97.5.695. PMID: 13052828; PMCID: PMC2136303.

          WELCH AD. The problem of drug resistance in cancer chemotherapy. Cancer Res. 1959 May;19(4):359-71. PMID: 13652119.

          Goldman M, Velu T, Pretolani M. Interleukin-10: actions and therapeutic potential. BioDrugs. 1997 Jan;7(1):6- 14. doi: 10.2165/00063030-199707010-00002. PMID: 18031075.

          Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol. 2021 Mar 11;11:617937. doi: 10.3389/fonc.2021.617937. PMID: 33777761; PMCID: PMC7991804.

          Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version - NCI [Internet]. [accessed March 31/2023 ]. Available in: https://www.cancer.gov/types/ leukemia/patient/child-all-treatment-pdq

          Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev. 2021 Jul;73(3):1150-1171. doi: 10.1124/ pharmrev.120.000122. PMID: 34312303; PMCID: PMC8318518.

          Tamoxifeno | C26H29NO - PubChem [Internet]. [accessed March 31/2023]. Available in: https://pubchem.ncbi.nlm. nih.gov/compound/2733526

          Mills JN, Rutkovsky AC, Giordano A. Mechanisms of resistance in estrogen receptor positive breast cancer: overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol. 2018 Aug;41:59-65. doi: 10.1016/j. coph.2018.04.009. Epub 2018 Apr 30. PMID: 29719270; PMCID: PMC6454890.

          Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo). 2018 Sep 6;73(suppl 1):e478s. doi: 10.6061/clinics/2018/e478s. PMID: 30208165; PMCID: PMC6113849.

          Leighow SM, Liu C, Inam H, Zhao B, Pritchard JR. Multi-scale Predictions of Drug Resistance Epidemiology Identify Design Principles for Rational Drug Design. Cell Rep. 2020 Mar 24;30(12):3951-3963.e4. doi: 10.1016/j. celrep.2020.02.108. PMID: 32209458; PMCID: PMC8000225.

          Chatterjee N, Bivona TG. Polytherapy and Targeted Cancer Drug Resistance. Trends Cancer. 2019 Mar;5(3):170-182. doi: 10.1016/j.trecan.2019.02.003. Epub 2019 Feb 26. PMID: 30898264; PMCID: PMC6446041.

          Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest. 2019 Jul 2;129(8):3006-3017. doi: 10.1172/JCI127201. PMID: 31264969; PMCID: PMC6668696.

          Konieczkowski DJ, Johannessen CM, Garraway LA. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell. 2018 May 14;33(5):801-815. doi: 10.1016/j.ccell.2018.03.025. PMID: 29763622; PMCID: PMC5957297.

          Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat. 2021 Dec;59:100796. doi: 10.1016/j.drup.2021.100796. Epub 2021 Dec 16. PMID: 34953682; PMCID: PMC8810687.

          Crettol S, Petrovic N, Murray M. Pharmacogenetics of phase I and phase II drug metabolism. Curr Pharm Des. 2010;16(2):204-19. doi: 10.2174/138161210790112674. PMID: 19835560.

          Yoo HC, Han JM. Amino Acid Metabolism in Cancer Drug Resistance. Cells. 2022 Jan 2;11(1):140. doi: 10.3390/ cells11010140. PMID: 35011702; PMCID: PMC8750102.

          Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol. 2019 Oct;35(5):407-421. doi: 10.1007/s10565-019-09461-z. Epub 2019 Jan 24. PMID: 30680600; PMCID: PMC6881418.

          Bu L, Baba H, Yasuda T, Uchihara T, Ishimoto T. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci. 2020 Oct;111(10):3468-3477. doi: 10.1111/cas.14578. Epub 2020 Aug 11. PMID: 33044028; PMCID: PMC7541012.

          Bhattacharya S, Mohanty A, Achuthan S, Kotnala S, Jolly MK, Kulkarni P, Salgia R. Group Behavior and Emergence of Cancer Drug Resistance. Trends Cancer. 2021 Apr;7(4):323- 334. doi: 10.1016/j.trecan.2021.01.009. Epub 2021 Feb 20. PMID: 33622644; PMCID: PMC8500356.

          De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol. 2021 Jul;95(7):2279- 2297. doi: 10.1007/s00204-021-03063-7. Epub 2021 May 18. PMID: 34003341; PMCID: PMC8241801.

          Namee NM, O’Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer. 2018 Dec;1870(2):123-136. doi: 10.1016/j. bbcan.2018.07.003. Epub 2018 Jul 10. PMID: 30003999.

          Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer. 2019 Mar 30;18(1):55. doi: 10.1186/s12943-019-0965-7. PMID: 30925923; PMCID: PMC6441157.

          Xavier CPR, Caires HR, Barbosa MAG, Bergantim R, Guimarães JE, Vasconcelos MH. The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells. 2020 May 6;9(5):1141. doi: 10.3390/cells9051141. PMID: 32384712; PMCID: PMC7290603.

          Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol. 2020 Jun 11;11:1167. doi: 10.3389/fimmu.2020.01167. PMID: 32595638; PMCID: PMC7300210.

          Hillyar CR, Kanabar SS, Rallis KS, Varghese JS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics. 2022 Jun;14(11):699-709. doi: 10.2217/epi- 2021-0534. Epub 2022 May 16. PMID: 35574589.

          Xavier CPR, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat. 2022 May;62:100833. doi: 10.1016/j.drup.2022.100833. Epub 2022 Apr 5. PMID: 35429792.

          Abdelaal MR, Haffez H. The potential roles of retinoids in combating drug resistance in cancer: implications of ATP- binding cassette (ABC) transporters. Open Biol. 2022 Jun;12(6):220001. doi: 10.1098/rsob.220001. Epub 2022 Jun 1. PMID: 35642494; PMCID: PMC9157304.

          Riddihough G, Zahn LM. Epigenetics. What is epigenetics? Introduction. Science. 2010 Oct29;330(6004):611. doi: 10.1126/science.330.6004.611. PMID: 21030643.

          Definición de epigenética – Cancer dictionary [Internet]. [accessed March 31/2023]. Available in: https://www.cancer. gov/publications/dictionaries/cancer-terms/def/epigenetics

          Asano T. Drug Resistance in Cancer Therapy and the Role of Epigenetics. J Nippon Med Sch. 2020 Dec 14;87(5):244- 251. doi: 10.1272/jnms.JNMS.2020_87-508. Epub 2020 May 30. PMID: 32475898.

          Yang C, Zhang J, Ma Y, Wu C, Cui W, Wang L. Histone methyltransferase and drug resistance in cancers. J Exp Clin Cancer Res. 2020 Aug 28;39(1):173. doi: 10.1186/s13046- 020-01682-z. PMID: 32859239; PMCID: PMC7455899.

          Kwon Y, Kim Y, Jung HS, Jeoung D. Role of HDAC3- miRNA-CAGE Network in Anti-Cancer Drug-Resistance. Int J Mol Sci. 2018 Dec 23;20(1):51. doi: 10.3390/ ijms20010051. PMID: 30583572; PMCID: PMC6337380.

          Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther. 2020 Sep 8;5(1):193. doi: 10.1038/s41392-020-00300-w. PMC7479143.

          Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019 Feb 11;11(1):25. doi: 10.1186/s13148- 018-0587-8. PMID: 30744689; PMCID: PMC6371621.

          MIR100 microARN 100 [Homo sapiens (human)] - Gen - NCBI [Internet]. [accessed March 31/2023]. Available in: https://www.ncbi.nlm.nih.gov/gene/406892

          Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci. 2022 May 24;23(11):5881. doi: 10.3390/ ijms23115881. PMID: 35682560; PMCID: PMC9180509.

          About - STRING functional protein association networks [Internet]. [accessed Mrch 31/2023]. Available in:https:// stringdb.org/cgi/about?footer_active_subpage=statistics

          Atlas de Proteínas Humanas [Internet]. [accessed March 31/2023]. Available in: https://www.proteinatlas.org/

          LiX,LiM,HuangM,LinQ,FangQ,LiuJ,ChenX,Liu L,ZhanX,ShanH,LuD,LiQ,LiZ,ZhuX.Themulti- molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother. 2022 Jun;150:113064. doi: 10.1016/j.biopha.2022.113064. Epub 2022 May 5. PMID: 35658234.

          Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018 Jun;50:77-89. doi: 10.1016/j. semcancer.2017.11.018. Epub 2017 Nov 24. PMID: 29180117; PMCID: PMC6565931.

          Wu T, Gu X, Cui H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells. 2021 May 10;10(5):1147. doi: 10.3390/ cells10051147. PMID: 34068643; PMCID: PMC8150781.

          Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells. 2019 Dec 24;9(1):60. doi: 10.3390/cells9010060. PMID: 31878360; PMCID: PMC7017199.

          Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat. 2020 Mar;49:100673. doi: 10.1016/j. drup.2019.100673. Epub 2019 Dec 17. PMID: 31877405.

          Seo J, Ha J, Kang E, Cho S. The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res. 2021 Mar;44(3):281-292. doi: 10.1007/s12272-021-01321-x. Epub 2021 Mar 25. PMID: 33768509; PMCID: PMC8009775.

          Gu L, Saha ST, Thomas J, Kaur M. Targeting cellular cholesterol for anticancer therapy. FEBS J. 2019 Nov;286(21):4192-4208. doi: 10.1111/febs.15018. Epub 2019 Aug 12. PMID: 31350867.

          Saito RF, Andrade LNS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol. 2022 Feb 15;13:768606. doi:10.3389/fimmu.2022.768606. PMID: 35250970; PMCID: PMC8889569.

          Nwabo Kamdje AH, Seke Etet PF, Kipanyula MJ, Vecchio L, Tagne Simo R, Njamnshi AK, Lukong KE, Mimche PN. Insulin-like growth factor-1 signaling in the tumor microenvironment: Carcinogenesis, cancer drug resistance, and therapeutic potential. Front Endocrinol (Lausanne). 2022 Aug 9;13:927390. doi: 10.3389/fendo.2022.927390. PMID: 36017326; PMCID: PMC9395641.

          SunR,YingY,TangZ,LiuT,ShiF,LiH,GuoT,Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett. 2020;27(1):17-29. doi: 10.2174/0929866526666190926154248. 31556849; PMCID: PMC6978646.

          SMPDB [Internet]. [accessed March 31/2023]. Available in: https://smpdb.ca/view?subject=Drug+Metabolism

          Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance? Molecules. 2021 Apr 29;26(9):2601. doi: 10.3390/molecules26092601. PMID: 33946916; PMCID: PMC8124695.

          Sun X, Hu B. Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform. 2018 Nov 27;19(6):1382-1399. doi: 10.1093/bib/bbx065. PMID: 28981626; PMCID: PMC6402530.

          Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014 Nov 12;114(21):10869-939. doi: 10.1021/cr400532z. Epub 2014 Sep 26. PMID: 25260098.

          KarimiM,SahandiZangabadP,Baghaee-RavariS,Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc. 2017 Apr 5;139(13):4584-4610. doi: 10.1021/ jacs.6b08313. Epub 2017 Mar 13. PMID: 28192672; PMCID: PMC5475407.

          Zhang L, Wang D, Yang K, Sheng D, Tan B, Wang Z, Ran H, Yi H, Zhong Y, Lin H, Chen Y. Mitochondria-Targeted Artificial “Nano-RBCs” for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Adv Sci (Weinh). 2018 May 21;5(8):1800049. doi: 10.1002/advs.201800049. PMID: 30128231; PMCID: PMC6097143.

          Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol. 2022 Jul 18;15(1):97. doi: 10.1186/s13045-022- 01313-4. PMID: 35851420; PMCID: PMC9290242.

          Leonardo-Sousa C, Carvalho AN, Guedes RA, Fernandes PMP, Aniceto N, Salvador JAR, Gama MJ, Guedes RC. Revisiting Proteasome Inhibitors: Molecular Underpinnings of Their Development, Mechanisms of Resistance and Strategies to Overcome Anti-Cancer Drug Resistance. Molecules. 2022 Mar 28;27(7):2201. doi: 10.3390/ molecules27072201. PMID: 35408601; PMCID: PMC9000344.

          Sistema OJS 3.4.0.5 - Metabiblioteca |