Morphogenesis of penis and spongy urethra during human gestation

Contenido principal del artículo

Resumen

Background. Every year, approximately 500,000 children in the world are born with congenital abnormalities of the urinary system and kidneys. Therefore, pediatricians and urologists must understand the normal processes that lead to male sexual differentiation. Objective. The aim of this study was to describe in detail the process that occurs during masculinization of the fetus, which leads to the formation of male structures under normal conditions. Methods. Fifty-four fetuses with gestation periods between four and 18 weeks were collected, which were considered normal, did not have any signs of external anatomic abnormalities or any alteration in their development, and were a product of spontaneous abortions and tubal pregnancies. The urogenital sinus region was collected and prepared for scanning electron microscopy and high-resolution optical microscopy to observe the cellular characteristics of the urogenital fold during external development in male embryos. Results. This work shows the formation of the glans and spongy urethra in a detailed man- ner from the eighth week of embryonic development, carefully describing the role of the labioscrotal folds and the fusion of the walls of the urogenital fold during the subsequent stages of development to form the proximal part of the urinary tract. Conclusion. The for- mation of the penile urethra from the urethral fold and its posterior fusion have a probable role of ectodermal cells, in addition to the endodermal origin established previously.

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

Mo R, Kim JH, Zhang J, Chiang C, Hui CC, Kim PC. Anorectal malformations caused by defects in sonic hedgehog signaling. The American journal of pathology. 2001;159(2):765-74.

Sennert M, Perske C, Wirmer J, Fawzy M, Hadidi AT. The urethral plate and the underlying tissue; a histological and histochemical study. J Pediatr Urol. 2022;18(3):364 e1- e9.

Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5(3):307-42.

O'Rahilly R, Muller F. Developmental stages in human embryos: revised and new measurements. Cells, tissues, organs. 2010;192(2):73-84.

Wang S, Zheng Z. Differential cell proliferation and cell death during the urethral groove formation in guinea pig model. Pediatr Res. 2019;86(4):452-9.

Akbari G, Babaei M, Goodarzi N. The morphological characters of the male external genitalia of the European hedgehog (Erinaceus Europaeus). Folia Morphol (Warsz). 2018;77(2):293-300.

Cunnane EM, Davis NF, Cunnane CV, Lorentz KL, Ryan AJ, Hess J, et al. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials. 2021;269:120651.

Cunha GR, Liu G, Sinclair A, Cao M, Glickman S, Cooke PS, et al. Androgen-independent events in penile development in humans and animals. Differentiation. 2020;111:98-114.

Delgado Garcia A. Anatomia humana funcional y clinica: Universidad del Valle; 2017. 500 p.

McBride ML, Baillie J, Poland BJ. Growth parameters in normal fetuses. Teratology. 1984;29(2):185-91.

Gallón Nausa J, Castro Haiek DE. Caracterización morfológica y Evaluación clínica de sustitutos óseos de origen porcino de la casa 3Biomat para su aplicación en lesiones óseas bimaxilares. Nova. 2017;15:11-23.

Acero E, Celis LG, Lizcano F, Garay J, Ortiz JG, Carrillo G. Caracterización Histológica E Inmunocitoquímica de la Grasa Infrapatelar de Hoffa. Nova. 2011;9(16):124-8.

Rodríguez J, Escobar S, Abder L, del Río J, Quintero L, Ocampo D. Nueva metodología geométrica para evaluar la morfología del eritrocito normal. Nova. 2017;15(27):37 - 43.

Blaschko SD, Cunha GR, Baskin LS. Molecular mechanisms of external genitalia development. Differentiation. 2012;84(3):261-8.

Arnold AP. A general theory of sexual differentiation. J Neurosci Res. 2017;95(1-2):291-300.

Baskin L, Derpinghaus A, Cao M, Sinclair A, Li Y, Overland M, et al. Hot spots in fetal human penile and clitoral development. Differentiation. 2020;112:27-38.

Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, et al. Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation. 2020;111:41-59.

Bardin CW, Catterall JF. Testosterone: a major determinant of extragenital sexual dimorphism. Science. 1981;211(4488):1285-94.

Yamada G, Satoh Y, Baskin LS, Cunha GR. Cellular and molecular mechanisms of development of the external genitalia. Differentiation. 2003;71(8):445-60.

Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in humans. Sex Dev. 2014;8(5):262-72.

Dufau ML. Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol. 1988;50:483-508.

Baskin L, Shen J, Sinclair A, Cao M, Liu X, Liu G, et al. Development of the human penis and clitoris. Differentiation. 2018;103:74-85.

Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, et al. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development. 2015;142(10):1893-908.

Dos Santos AC, Conley AJ, de Oliveira MF, de Assis Neto AC. Development of urogenital system in the Spix cavy: A model for studies on sexual differentiation. Differentiation. 2018;101:25-38.

Hashimoto D, Hyuga T, Acebedo AR, Alcantara MC, Suzuki K, Yamada G. Developmental mutant mouse models for external genitalia formation. Congenit Anom (Kyoto). 2019;59(3):74-80.

Larney C, Bailey TL, Koopman P. Switching on sex: transcriptional regulation of the testis-determining gene Sry. Development. 2014;141(11):2195-205.

Herrera AM, Cohn MJ. Embryonic origin and compartmental organization of the external genitalia. Sci Rep. 2014;4:6896.

Wang S, Shi M, Zhu D, Mathews R, Zheng Z. External Genital Development, Urethra Formation, and Hypospadias Induction in Guinea Pig: A Double Zipper Model for Human Urethral Development. Urology. 2018; 113:179-86.

Bernardo GM, Keri RA. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep. 2012;32(2):113-30.

Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582.

Besnard V, Wert SE, Hull WM, Whitsett JA. Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr Patterns. 2004;5(2):193-208.

Shen J, Isaacson D, Cao M, Sinclair A, Cunha GR, Baskin L. Immunohistochemical expression analysis of the human fetal lower urogenital tract. Differentiation. 2018;103:100-19.

Liu G, Liu X, Shen J, Sinclair A, Baskin L, Cunha GR. Contrasting mechanisms of penile urethral formation in mouse and human. Differentiation. 2018;101:46-64.

Liu X, Liu G, Shen J, Yue A, Isaacson D, Sinclair A, et al. Human glans and preputial development. Differentiation. 2018;103:86-99.

Shen J, Overland M, Sinclair A, Cao M, Yue X, Cunha G, et al. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra. Differentiation. 2016;92(4):169-82.

Stoddard N, Leslie SW. Histology, Male Urethra. StatPearls. Treasure Island (FL)2023.

Glenister TW. The origin and fate of the urethral plate in man. J Anat. 1954;88(3):413-25.

Descargas

La descarga de datos todavía no está disponible.