Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Genética del metabolismo lipídico en la biología del desarrollo de la aterosclerosis

Genetics of lipid metabolism in the developmental biology of atherosclerosis



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Acosta, S. D., Álvarez, R. E., & Urbano, A. L. (2024). Genética del metabolismo lipídico en la biología del desarrollo de la aterosclerosis. REVISTA NOVA , 22(42). https://doi.org/10.22490/24629448.8196

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

La aterosclerosis, constituye la primera causa de muerte en el mundo, por encima de la violencia. Dada la complejidad fisiopatológica que esta presenta, es importante reconocer las alteraciones genéticas y aterogénicas que se relacionan con su biología del desarrollo, lo cual es útil para la prevención y control de la enfermedad obstructiva de vasos sanguíneos. El patrón de herencia genético y la disponibilidad de genes candidatos, como PCSK9, APOB, APOA5, APOC3, ApoE y ABCA1, LPA, involucrados en la síntesis y metabolismo de lipoproteínas muestran la posibilidad de establecer biomarcadores relacionados con alteraciones en niveles plasmáticos, demostrando su asociación de riesgo en diferentes poblaciones, lo cual permite la identificación de posibles dianas terapéuticas.


Visitas del artículo 122 | Visitas PDF 103


Descargas

Los datos de descarga todavía no están disponibles.
  1. Bibliografía
  2. Guijarro C, Cosín-Sales J. Colesterol LDL y aterosclerosis: evidencias. Clínica e Investig en Arterioscler. 2021 May 1;33:25–32.
  3. Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol [Internet]. 2020 Jul 1 [cited 2023 Aug 25];17(7):387–401. Available from: https://pubmed.ncbi.nlm.nih.gov/32203286/
  4. Song P, R Fowkes FG, Rudan I, Cai Y, Rahimi KD, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Artic Lancet Glob Heal [Internet]. 2020 [cited 2023 Jun 25];8:721–50. Available from: www.thelancet.com/lancetgh
  5. Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int [Internet]. 2022 Mar 1 [cited 2023 Aug 24];72(3):151–60. Available from: https://pubmed.ncbi.nlm.nih.gov/35076127/
  6. Holtzman NG, Kathryn Iovine M, Liang JO, Morris J. Learning to Fish with Genetics: A Primer on the Vertebrate Model Danio rerio. Genetics [Internet]. 2016 Jul 1 [cited 2023 Aug 24];203(3):1069–89. Available from: https://pubmed.ncbi.nlm.nih.gov/27384027/
  7. Shuvalova YA, Kaminnaya V, Kaminnyi AI. Contribution of Interleukin-6 system genes polymorphisms to the development of coronary atherosclerosis. Gene. 2023 Apr 20;861:147253.
  8. Campedelli FL, e Silva KSF, Rodrigues DA, Martins JVM, Costa IR, Lagares MH, et al. Polymorphism of the gene eNOS G894T (Glu298Asp) in symptomatic patients with aterosclerosis. Genet Mol Res [Internet]. 2017 May 4 [cited 2023 Jun 25];16(2). Available from: https://pubmed.ncbi.nlm.nih.gov/28481400/
  9. Meng H, Ruan J, Yan Z, Chen Y, Liu J, Li X, et al. New Progress in Early Diagnosis of Atherosclerosis. Int J Mol Sci [Internet]. 2022 Aug 1 [cited 2023 Aug 25];23(16). Available from: https://pubmed.ncbi.nlm.nih.gov/36012202/
  10. Yurtseven E, Ural D, Baysal K, Tokgözoğlu L. An Update on the Role of PCSK9 in Atherosclerosis. J Atheroscler Thromb. 2020 Sep 1;27(9):909–18.
  11. Chow Y-L, Teh LK, Chyi LH, Lim LF, Yee CC, Wei LK. Lipid Metabolism Genes in Stroke Pathogenesis: The Atherosclerosis. Curr Pharm Des [Internet]. 2020 Jun 14 [cited 2023 Jun 26];26(34):4261–71. Available from: https://pubmed.ncbi.nlm.nih.gov/32534558/
  12. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Española Cardiol [Internet]. 2021 Sep 1 [cited 2023 Jun 26];74(9):790–9. Available from: http://www.revespcardiol.org/es-declaracion-prisma-2020-una-guia-articulo-S0300893221002748
  13. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol [Internet]. 2020 Dec 22 [cited 2023 Aug 25];76(25):2982–3021. Available from: https://pubmed.ncbi.nlm.nih.gov/33309175/
  14. Ley K. Inflammation and Atherosclerosis. Cells [Internet]. 2021 May 1 [cited 2023 Aug 25];10(5). Available from: /pmc/articles/PMC8156496/
  15. Charla E, Mercer J, Maffia P, Nicklin SA. Extracellular vesicle signalling in atherosclerosis. 2020 [cited 2023 Aug 24]; Available from: www.elsevier.com/locate/cellsig
  16. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther [Internet]. 2022 Dec 1 [cited 2023 Aug 25];7(1). Available from: /pmc/articles/PMC9033871/
  17. Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, et al. PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Hear J - Cardiovasc Pharmacother [Internet]. 2019 Oct 1 [cited 2023 Aug 25];5(4):237–45. Available from: https://dx.doi.org/10.1093/ehjcvp/pvz022
  18. Gupta M, Blumenthal C, Chatterjee S, Bandyopadhyay D, Jain V, Lavie CJ, et al. Novel emerging therapies in atherosclerosis targeting lipid metabolism. https://doi.org/101080/1354378420201764937. 2020 Jun 2;29(6):611–22.
  19. Que X, Hung M-Y, Yeang C, Gonen A, Prohaska TA, Sun X, et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. 2018 [cited 2023 May 12]; Available from: https://doi.org/10.1038/s41586-018-0198-8
  20. Assini JM, Clark JR, Youssef A, Xing C, Doerfler AM, Park SH, et al. High levels of lipoprotein(a) in transgenic mice exacerbate atherosclerosis and promote vulnerable plaque features in a sex-specific manner. Atherosclerosis. 2023 May 30;
  21. Marco-Benedí V, Cenarro A, Laclaustra M, Larrea-Sebal A, Jarauta E, Lamiquiz-Moneo I, et al. Lipoprotein(a) in hereditary hypercholesterolemia: Influence of the genetic cause, defective gene and type of mutation. Atherosclerosis. 2022 May 1;349:211–8.
  22. Çoban N, Özuynuk AS, Erkan AF, Ekici B, Kaşit M, Ünaltuna NE. Association of APOA5-1131T>C polymorphism with obesity in coronary artery disease. Turk Kardiyol Dern Ars. 2020 Jul 1;48(5):461–71.
  23. Graham SE, Clarke SL, Wu K-HH, Kanoni S, M Zajac GJ, Ramdas S, et al. The power of genetic diversity in genome-wide association studies of lipids. [cited 2023 May 12]; Available from: https://doi.org/10.1038/s41586-021-04064-3
  24. Man JJ, Beckman JA, Jaffe IZ. Sex as a Biological Variable in Atherosclerosis. Circ Res [Internet]. 2020 Apr 24 [cited 2023 May 12];1297–319. Available from: https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.120.315930
  25. Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, et al. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res. 2013 Jul 1;54(7):1894–905.
  26. Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 2019 258 [Internet]. 2019 Jul 29 [cited 2023 Jun 26];25(8):1280–9. Available from: https://www.nature.com/articles/s41591-019-0512-5
  27. Nagao M, Lyu Q, Zhao Q, Wirka RC, Bagga J, Nguyen T, et al. Coronary Disease Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circ Res [Internet]. 2020 Feb 2 [cited 2023 Aug 25];126(4):517. Available from: /pmc/articles/PMC7274203/
  28. Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, et al. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res [Internet]. 2021 Jul 7 [cited 2023 Aug 25];129(2):240. Available from: /pmc/articles/PMC8260472/
  29. Wang Y, Gao H, Wang F, Ye Z, Mokry M, Turner AW, et al. Dynamic changes in chromatin accessibility are associated with the atherogenic transitioning of vascular smooth muscle cells. [cited 2023 May 12]; Available from: https://doi.org/10.1093/cvr/cvab347
  30. Xu Y, Li Y, Jadhav K, Pan X, Zhu Y, Hu S, et al. Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nat Metab [Internet]. 2021 Jan 1 [cited 2023 Aug 25];3(1):59. Available from: /pmc/articles/PMC7856821/
  31. Wu J, Huang Y, Zhou X, Xiang Z, Yang Z, Meng D, et al. ATF3 and its emerging role in atherosclerosis: a narrative review. Cardiovasc Diagn Ther [Internet]. 2022 Dec 16 [cited 2023 Aug 25];12(6):926–42. Available from: /pmc/articles/PMC9808109/
  32. Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, et al. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci [Internet]. 2021 Aug 2 [cited 2023 Aug 25];22(16):15. Available from: /pmc/articles/PMC8395110/
  33. Nasrallah A, Sulpice E, Kobaisi F, Gidrol X, Rachidi W. CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells [Internet]. 2022 Nov 1 [cited 2023 Aug 25];11(22). Available from: /pmc/articles/PMC9688409/
  34. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nat 2021 5937859 [Internet]. 2021 May 19 [cited 2023 Jun 26];593(7859):429–34. Available from: https://www.nature.com/articles/s41586-021-03534-y
  35. Levin MG, Rader DJ. Polygenic risk scores for dyslipidemia and atherosclerotic cardiovascular disease: Progress toward clinical implementation. Best Pract Res Clin Endocrinol Metab. 2023 May 1;37(3):101702.
  36. Ha EE, Van Camp AG, Bauer RC. Genetics-Driven Discovery of Novel Regulators of LipidMetabolism. Curr Opin Lipidol [Internet]. 2019 Jun 1 [cited 2023 Jun 26];30(3):157. Available from: /pmc/articles/PMC6681899/
  37. Liu Y, Cheng J, Guo X, Mo J, Gao B, Zhou H, et al. The roles of PAI-1 gene polymorphisms in atherosclerotic diseases: A systematic review and meta-analysis involving 149,908 subjects. Gene. 2018 Oct 5;673:167–73.
  38. Tamarit García JJ. Atherogenic indices: usefulness as predictors of cardiovascular disease. Clínica e Investig en Arterioscler (English Ed. 2022 Sep 1;34(5):269–70.
  39. Ruiz-León AM, Lapuente M, Estruch R, Casas R. Clinical Advances in Immunonutrition and Atherosclerosis: A Review. Front Immunol [Internet]. 2019 [cited 2023 Aug 25];10(APR):837. Available from: /pmc/articles/PMC6491827/
  40. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. Science (80- ) [Internet]. 2019 Jan 3 [cited 2023 Jun 26];111(2877):166–86. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343489/
  41. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini R V., et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid Med Cell Longev [Internet]. 2020 [cited 2023 Jun 26];2020. Available from: /pmc/articles/PMC7512065/
  42. Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation. Front Cardiovasc Med [Internet]. 2021 Mar 23 [cited 2023 Jun 26];8:639727. Available from: /pmc/articles/PMC8021767/
  43. Barale C, Melchionda E, Morotti A, Russo I. PCSK9 Biology and Its Role in Atherothrombosis. Int J Mol Sci [Internet]. 2021 Jun 1 [cited 2023 Jun 26];22(11):5880. Available from: /pmc/articles/PMC8198903/
  44. Striukova E V., Maksimov VN, Ragino YI, Polonskaya Y V., Murashov IS, Volkov AM, et al. Polymorphisms in the CETP, APOC3 and APOE genes in men with unstable atherosclerotic plaques in the coronary arteries. Meta Gene. 2021 Feb 1;27:100847.
  45. Mokhtar FBA, Plat J, Mensink RP. Genetic variation and intestinal cholesterol absorption in humans: A systematic review and a gene network analysis. Prog Lipid Res. 2022 Apr 1;86:101164.
  46. Cui G, Tian M, Hu S, Wang Y, Wang DW. Identifying functional non-coding variants in APOA5/A4/C3/A1 gene cluster associated with coronary heart disease. J Mol Cell Cardiol. 2020 Jul 1;144:54–62.
  47. Ulloque-Badaracco JR, Hernandez-Bustamante EA, Alarcon-Braga EA, Mosquera-Rojas MD, Campos-Aspajo A, Salazar-Valdivia FE, et al. Atherogenic index of plasma and coronary artery disease: A systematic review. Open Med [Internet]. 2022 Jan 1 [cited 2023 Jun 26];17(1):1915. Available from: /pmc/articles/PMC9730543/
  48. Chainchel Singh MK, Abdul Rashid SN, Abdul Hamid S, Mahmood MS, Feng SS, Mohd Nawawi H, et al. Correlation and assessment of coronary artery luminal stenosis: Post-mortem computed tomography angiogram versus histopathology. Forensic Sci Int. 2020 Mar 1;308.
  49. Nam JS, Kim MK, Nam JY, Park K, Kang S, Ahn CW, et al. Association between atherogenic index of plasma and coronary artery calcification progression in Korean adults. Lipids Health Dis [Internet]. 2020 Jul 2 [cited 2023 Jun 26];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32615982/
  50. Guo Q, Zhou S, Feng X, Yang J, Qiao J, Zhao Y, et al. The sensibility of the new blood lipid indicator--atherogenic index of plasma (AIP) in menopausal women with coronary artery disease. Lipids Health Dis [Internet]. 2020 Feb 24 [cited 2023 Jun 26];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32093690/
  51. Willeit P, Tschiderer L, Allara E, Reuber K, Seekircher L, Gao L, et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation. 2020 Aug 18;142(7):621–42.
  52. García Muñoz A, Melo Buitrago P, Rodríguez Arcila M, Silva Zambrano D, García Muñoz A, Melo Buitrago P, et al. Índices aterogénicos y composición corporal en cadetes de una escuela de formación militar colombiana. Sanid Mil [Internet]. 2020 [cited 2023 Jun 26];76(1):13–8. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1887-85712020000100003&lng=es&nrm=iso&tlng=es
Sistema OJS 3.4.0.5 - Metabiblioteca |