Silenciamiento génico en insectos plaga que afectan la industria agrícola usando ARN de interferencia

Contenido principal del artículo

Autores

Ligia Consuelo Sánchez Leal https://orcid.org/0000-0001-7796-1326
Lizeth Ossa Toro https://orcid.org/0000-0003-2091-8487
Dina Padilla Jarava https://orcid.org/0000-0002-7201-7245
Luz Stella Fuentes Quintero https://orcid.org/0000-0002-6618-870X

Resumen

Los insectos plaga, son especies de organismos vivos que en forma constante se encuentran en poblaciones altas, ocasionando daños económicos en los cultivos. Generalmente, suele tratarse de especies puntuales, por lo general, sólo una o dos, que pueden causar gran afectación económica en el sector de la agricultura. En las últimas 3 décadas se ha venido desarrollando el concepto de un proceso biológico, detectado en eucariotas ampliamente, mediante el que se pueden silenciar genes, a partir de ARN de doble cadena (ARNdc). Esta maquinaria se ha investigado para conocer su funcionamiento y buscar potenciales aplicaciones que podrían tener en el campo de la biotecnología. En varios estudios se encontró que el silenciamiento de genes se debe a las interacciones enzimáticas intracelulares citoplasmáticas con moléculas de ARN pequeñas (ARNsi), que actúan sobre el ARN mensajero (ARNm) intracelular, impidiendo que este se traduzca a proteína. Mediante este mecanismo se busca silenciar genes específicos en insectos plaga, que sean esenciales para que el insecto pueda vivir y de esa manera evitar la proliferación de la plaga. Este artículo recopila los estudios realizados acerca del ARN de interferencia, referidos al mecanismo genético de los insectos, como alternativa para su control

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell [Internet]. 1990 [cited 2020 Apr 25];2(4):279–89. Available from: http://www.plantcell.org/content/2/4/279
2. Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol [Internet]. 1992 [cited 2020 Apr 25];6(22):3343–53. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1484489
3. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell [Internet]. 1995 May [cited 2020 Apr 25];81(4):611–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7758115
4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature [Internet]. 1998 Feb [cited 2020 Apr 25];391(6669):806–11. Available from: https://pubmed.ncbi.nlm.nih.gov/9486653/
5. Hamilton AJ, Baulcombe DC. A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science (80- ) [Internet]. 1999 Oct 29 [cited 2020 Apr 25];286(5441):950 LP – 952. Available from: http://science.sciencemag.org/content/286/5441/950.abstract
6. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature [Internet]. 2001 Jan [cited 2020 Apr 25];409(6818):363–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11201747/
7. Barrón C. Implicaciones Fisiopatológicas De Los Rna De Interferencia [Internet]. Universidad Complutense. 2020-04-29; 2017. Available from: http://147.96.70.122/web/tfg/tfg/memoria/carmen barron garcia.pdf
8. Haley B, Tang G, Zamore PD. In vitro analysis of RNA interference in Drosophila melanogaster. Methods [Internet]. 2003 [cited 2020 Apr 29];30(4):330–6. Available from: http://www.sciencedirect.com/science/article/pii/S1046202303000525
9. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol [Internet]. 2007 Jan [cited 2020 Apr 29];8(1):23–36. Available from: https://pubmed.ncbi.nlm.nih.gov/17183358/
10. Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem [Internet]. 2015 Jun 2 [cited 2020 Apr 29];84(1):405–33. Available from: https://doi.org/10.1146/annurev-biochem-060614-034258
11. Yigit E, Batista PJ, Bei Y, Pang KM, Chen C-CG, Tolia NH, et al. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell [Internet]. 2006 Nov 17 [cited 2020 Apr 29];127(4):747–57. Available from: https://doi.org/10.1016/j.cell.2006.09.033
12. & Wolfman LSBA. Small interfering RNA induced knockdown of green fluorescent protein using synthetic RNA molecules. J Chem Inf Model [Internet]. 2013;53(9):1689–99. Available from: http://elfosscientiae.cigb.edu.cu/PDFs/Biotecnol Apl/2007/24/1/BA002401OL049-052.pdf
13. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev [Internet]. 2004/03/10. 2004 Mar 1 [cited 2020 Apr 29];18(5):504–11. Available from: https://pubmed.ncbi.nlm.nih.gov/15014042
14. Guerra JJL, Arjona LG. ARN interferente: una herramienta y un novedoso mecanismo de regulación génica. Científico Estud las Ciencias Médicas Cuba [Internet]. 2008 [cited 2020 Apr 29]; Available from: http://www.16deabril.sld.cu/rev/235/04.html
15. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet [Internet]. 2003 [cited 2020 Apr 29];35(3):215–7. Available from: https://doi.org/10.1038/ng1253
16. Novina CD, Sharp PA. The RNAi revolution. [Internet]. Vol. 430, Nature. England; 2004 [cited 2020 Apr 29]. p. 161–4. Available from: https://pubmed.ncbi.nlm.nih.gov/15241403/
17. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JNM, et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol [Internet]. 2001 [cited 2020 Apr 29];11(6):436–40. Available from: http://www.sciencedirect.com/science/article/pii/S0960982201001166
18. Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov [Internet]. 2012 Jan [cited 2020 Apr 30];11(2):125–40. Available from: https://pubmed.ncbi.nlm.nih.gov/22262036/
19. Ahmed I, Ahmed Tipu S, Ishtiaq S. Malignant mesothelioma. Pakistan J Med Sci [Internet]. 2013 Nov [cited 2020 Apr 30];29(6):1433–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24550969
20. Cotes AM. Control biológico de fitopatógenos, insectos y ácaros [Internet]. Vol. 1. 2018 [cited 2020 Apr 30]. Available from: file:///C:/Users/Lenovo/Downloads/33829-reducido4.pdf
21. Sen GL, Blau HM. A brief history of RNAi: the silence of the genes. FASEB J [Internet]. 2006 Jul 1 [cited 2020 Apr 30];20(9):1293–9. Available from: https://doi.org/10.1096/fj.06-6014rev
22. Röther S, Meister G. Small RNAs derived from longer non-coding RNAs. Biochimie [Internet]. 2011 Nov [cited 2020 Apr 30];93(11):1905–15. Available from: https://pubmed.ncbi.nlm.nih.gov/21843590/
23. Borovsky D. Insect peptide hormones and RNA-Mediated interference (RNAi): Promising technologies for future plant protection. Phytoparasitica [Internet]. 2005 Mar 1 [cited 2020 Apr 30];33:109–12. Available from: https://www.researchgate.net/publication/298552487_Insect_peptide_hormones_and_RNA-Mediated_interference_RNAi_Promising_technologies_for_future_plant_protection
24. Chaves B, Riley J. Determination of factors influencing integrated pest management adoption in coffee berry borer in Colombian farms. Agric Ecosyst Environ [Internet]. 2001 [cited 2020 Apr 30];87(2):159–77. Available from: http://www.sciencedirect.com/science/article/pii/S0167880901002766
25. Baker, P. La broca del café en Colombia; informe final del proyecto MIP para el café DFID-Cenicafé-CABI BioScience. Colomb Entomol [Internet]. 1999 [cited 2020 May 1];32(2):101–16. Available from: http://webcache.googleusercontent.com/search?q=cache:YKIKNgR49LcJ:www.scielo.org.co/pdf/rcen/v32n2/v32n2a01.pdf+&cd=2&hl=es&ct=clnk&gl=co 25
26. Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol [Internet]. 2010 Mar [cited 2020 May 1];56(3):227–35. Available from: https://pubmed.ncbi.nlm.nih.gov/19837076/#:~:text=Abstract,and digestion in its midgut.
27. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol [Internet]. 2007 [cited 2020 May 1];25(11):1322–6. Available from: https://doi.org/10.1038/nbt1359
28. Bautista MAM, Miyata T, Miura K, Tanaka T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol [Internet]. 2009 [cited 2020 May 1];39(1):38–46. Available from: http://www.sciencedirect.com/science/article/pii/S0965174808001732
29. AGUILERA G. C, PADILLA H. BE, FLÓREZ R. CP, RUBIO G. JD, ACUÑA Z. JR. ARN interferente: Potenciales usos en genómica funcional y control genético de Hypothenemus hampei (Coleoptera: Scolytinae) [Internet]. Vol. 37, Revista Colombiana de Entomología. scieloco; 2011 [cited 2020 May 1]. p. 167–72. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882011000200001&lng=es
30. Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci [Internet]. 2017 Sep [cited 2020 Aug 24];73(9):1883–99. Available from: https://pubmed.ncbi.nlm.nih.gov/28195683/
31. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol [Internet]. 2006 Jun [cited 2020 May 1];15(3):383–91. Available from: https://pubmed.ncbi.nlm.nih.gov/16756557/
32. Saleh M-C, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol [Internet]. 2006 [cited 2020 May 1];8(8):793–802. Available from: https://doi.org/10.1038/ncb1439
33. Wynant N, Santos D, Vanden Broeck J. Biological mechanisms determining the success of RNA interference in insects. Int Rev Cell Mol Biol [Internet]. 2014 [cited 2020 May 1];312:139–67. Available from: https://pubmed.ncbi.nlm.nih.gov/25262241/
34. Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C, Bonne I, et al. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci Rep [Internet]. 2016 [cited 2020 May 1];6(June):1–9. Available from: http://dx.doi.org/10.1038/srep27085
35. Tassetto M, Kunitomi M, Andino R. Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. Cell [Internet]. 2017 Apr [cited 2020 May 1];169(2):314-325.e13. Available from: https://pubmed.ncbi.nlm.nih.gov/28388413/
36. Vogel E, Santos D, Mingels L, Verdonckt T-W, Broeck J Vanden. RNA Interference in Insects: Protecting Beneficials and Controlling Pests [Internet]. Vol. 9, Frontiers in Physiology. 2019 [cited 2020 May 1]. p. 1912. Available from: https://www.frontiersin.org/article/10.3389/fphys.2018.01912
37. Wuriyanghan H, Rosa C, Falk BW. Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericerca cockerelli. PLoS One [Internet]. 2011 Nov 16 [cited 2020 Aug 24];6(11):e27736. Available from: https://doi.org/10.1371/journal.pone.0027736
38. Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci [Internet]. 2013 Apr 23 [cited 2020 Aug 24];9(4):370–81. Available from: https://pubmed.ncbi.nlm.nih.gov/23630449
39. Wu K-M, Lu Y-H, Feng H-Q, Jiang Y-Y, Zhao J-Z. Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin–Containing Cotton. Science (80- ) [Internet]. 2008 Sep 19 [cited 2020 Aug 24];321(5896):1676 LP – 1678. Available from: http://science.sciencemag.org/content/321/5896/1676.abstract
40. Noriega D, Valencia A, Villegas B. ARN de interferencia (ARNi): una tecnología novedosa con potencial para el control de insectos plaga. Rev UDCA Actual Divulg Científica [Internet]. 2016 [cited 2020 Sep 10];19(1):25–35. Available from: http://www.scielo.org.co/pdf/rudca/v19n1/v19n1a04.pdf
41. Kumar P, Pandit SS, Baldwin IT. Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference. PLoS One [Internet]. 2012 Feb 1 [cited 2020 Sep 10];7(2):e31347. Available from: https://doi.org/10.1371/journal.pone.0031347
42. Gong L, Chen Y, Hu Z, Hu M. Testing Insecticidal Activity of Novel Chemically Synthesized siRNA against Plutella xylostella under Laboratory and Field Conditions. PLoS One [Internet]. 2013 May 7 [cited 2020 Sep 10];8(5):e62990. Available from: https://doi.org/10.1371/journal.pone.0062990
43. Sáenz A. Susceptibilidad de plutella xylostella a heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae). Rev Colomb Entomol [Internet]. 2012 [cited 2020 Sep 10];38(1):94–6. Available from: http://www.scielo.org.co/pdf/rcen/v38n1/v38n1a16.pdf
44. Deise Cagliari, Ericmar Avila dos Santos, Naymã Dias GS and MZ. Nontransformative Strategies for RNAi in Crop Protection. In 2018 [cited 2020 Sep 10]. p. 1–18. Available from: https://www.intechopen.com/books/modulating-gene-expression-abridging-the-rnai-and-crispr-cas9-technologies/nontransformative-strategies-for-rnai-in-crop-protection
45. Šafářová D, Brázda P, Navrátil M. Effect of artificial dsRNA on infection of pea plants by pea seed-borne mosaic virus. Czech J Genet Plant Breed [Internet]. 2014 [cited 2020 Sep 10];50(2):105–8. Available from: https://www.agriculturejournals.cz/publicFiles/120_2013-CJGPB.pdf
46. Preall JB, Sontheimer EJ. RNAi: RISC Gets Loaded. Cell [Internet]. 2005 [cited 2020 Sep 10];123(4):543–5. Available from: http://www.sciencedirect.com/science/article/pii/S0092867405011645
47. Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature [Internet]. 2004 [cited 2020 Sep 10];431(7006):364–70. Available from: https://doi.org/10.1038/nature02875
48. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science [Internet]. 2003 Sep [cited 2020 Sep 12];301(5639):1545–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12970568/#:~:text=Here%2C we demonstrate that SID,that systemic RNAi in C
49. Borgio JF. RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopestic [Internet]. 2010 [cited 2020 Sep 12];3(1):386–93. Available from: https://www.cabdirect.org/cabdirect/abstract/20133182520
50. Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, et al. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLOS Pathog [Internet]. 2016 Oct 13 [cited 2020 Sep 12];12(10):e1005901. Available from: https://doi.org/10.1371/journal.ppat.1005901
51. Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Curr Opin Plant Biol [Internet]. 2017/05/29. 2017 Aug [cited 2020 Sep 12];38:133–41. Available from: https://pubmed.ncbi.nlm.nih.gov/28570950
52. Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi [Internet]. Vol. 10, Frontiers in Plant Science . 2019. p. 1319. Available from: https://www.frontiersin.org/article/10.3389/fpls.2019.01319

Descargas

La descarga de datos todavía no está disponible.

Artículos más leídos del mismo autor/a