Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

EFECTO DEL FACTOR DE CRECIMIENTO FIBROBLÁSTICO DOS EN LA REDUCCIÓN DE LA SENESCENCIA EN CÉLULAS MADRE MESENQUIMALES AISLADAS DE GELATINA DE WHARTON

FIBROBLASTIC GROWTH FACTOR TWO REDUCES THE SENESCENT EFFECT ON MESENCHYMAL STEM CELL ISOLATED FROM WHARTON´S JELLY.



Abrir | Descargar


Sección
Artículo Original Producto de Investigación

Cómo citar
Rubio Vargas, A. C., Alcázar, J. P., Lozano Trujillo, L. A., Garzón Perdomo, D. K., Bonilla Porras, A. R., González Gay, O. T., & Francis Turner, L. (2022). EFECTO DEL FACTOR DE CRECIMIENTO FIBROBLÁSTICO DOS EN LA REDUCCIÓN DE LA SENESCENCIA EN CÉLULAS MADRE MESENQUIMALES AISLADAS DE GELATINA DE WHARTON. REVISTA NOVA , 20(38). https://doi.org/10.22490/24629448.6188

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Laura Alejandra Lozano Trujillo

    Diana Katherine Garzón Perdomo

      Angélica Rocío Bonilla Porras

        Olivia Teresa González Gay


          Las células madre mesenquimales han generado interés en la ingeniería de tejidos, debido a sus propiedades proliferativas y capacidad de reparación de tejidos, sin embargo, para un trasplante exitoso, es necesario aumentar el número de células mediante un cultivo in-vitro. Durante este proceso la capacidad proliferativa disminuye, provocando cambios en la morfología y funcionalidad celular y afectando la viabilidad del cultivo, este estado se conoce como senescencia celular y como posibles causales, se ha considerado el estrés oxidativo y la falta de factores de crecimiento. Con el objetivo de evaluar el efecto de FGF-2 sobre la senescencia de un cultivo de células madre mesenquimales aisladas de gelatina de Wharton y su papel en la regulación del estrés oxidativo se añadieron dosis de 3,5 y 7,5 ng de FGF-2 al cultivo. Durante los pasajes 5 y 7, se estimó tanto la senescencia celular como la presencia de ROS (especies reactivas de oxígeno). Como resultado se obtuvo en el pasaje 5, una diferencia significativa del 99,5% entre el control (+) con respecto a los tratamientos con FGF-2, sin embargo, en el pasaje 7 se observó un aumento en la producción de la enzima β-galactosidasa y cambios morfológicos, confirmando un estado senescente en el cultivo en todos los tratamientos evaluados. En conclusión, las dosis utilizadas en este estudio contribuyeron positivamente a disminuir el proceso senescente en el cultivo celular, además se determinó, que el FGF-2 puede prolongar el tiempo de cultivo, retardando parcialmente la concentración de especies reactivas de oxígeno.


          Visitas del artículo 196 | Visitas PDF 113


          Descargas

          Los datos de descarga todavía no están disponibles.
          1. Y. B. Cui et al., "Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis," Behav. Brain Res., vol. 320, 2017, doi: 10.1016/j.bbr.2016.12.021. https://doi.org/10.1016/j.bbr.2016.12.021
          2. J. Vasanthan et al., "Role of Human Mesenchymal Stem Cells in Regenerative Therapy," Cells, vol. 10, no. 1. 2020, doi: 10.3390/cells10010054. https://doi.org/10.3390/cells10010054
          3. R. Yonemitsu et al., "Fibroblast Growth Factor 2 Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Repair of Chronic Tears," Am. J. Sports Med., vol. 47, no. 7, 2019, doi: 10.1177/0363546519836959. https://doi.org/10.1177/0363546519836959
          4. A. Aghajani Nargesi, L. O Lerman, and A. Eirin, "Mesenchymal stem cell-derived extracellular vesicles for renal repair," Curr. Gene Ther., vol. 17, no. 1, pp. 29-42, 2017. https://doi.org/10.2174/1566523217666170412110724
          5. B. Badyra, M. Sułkowski, O. Milczarek, and M. Majka, "Mesenchymal stem cells as a multimodal treatment for nervous system diseases," Stem Cells Translational Medicine, vol. 9, no. 10. 2020, doi: 10.1002/sctm.19-0430.
          6. https://doi.org/10.1002/sctm.19-0430
          7. G. Z. Salazar Vargas, V. M. Neyra Chagua, C. R. Pitot Álvarez, A. M. Muñoz Jáuregui, and L. Á. Aguilar Mendoza, "Estudios en neurociencias: aportes para la investigación en cultivo de células madre mesenquimales," Persona, no. 21, 2018. https://doi.org/10.26439/persona2018.n021.1993
          8. J. A. Guadix, J. L. Zugaza, and P. Gálvez-Martín, "Características, aplicaciones y perspectivas de las células madre mesenquimales en terapia celular," Medicina Clinica, vol. 148, no. 9. 2017, doi: 10.1016/j.medcli.2016.11.033. https://doi.org/10.1016/j.medcli.2016.11.033
          9. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016 Apr 15;99:62-8. doi: 10.1016/j.ymeth.2015.09.016. Epub 2015 Sep 15. PMID: 26384580. https://doi.org/10.1016/j.ymeth.2015.09.016
          10. M. Kosinski et al., "Bone Defect Repair Using a Bone Substitute Supported by Mesenchymal Stem Cells Derived from the Umbilical Cord," Stem Cells Int., vol. 2020, 2020, doi: 10.1155/2020/1321283.
          11. https://doi.org/10.1155/2020/1321283
          12. A. Can, F. T. Celikkan, and O. Cinar, "Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials," Cytotherapy, vol. 19, no. 12, pp. 1351-1382, 2017. https://doi.org/10.1016/j.jcyt.2017.08.004
          13. M. Ziaei, J. Zhang, D. V Patel, and C. N. J. McGhee, "Umbilical cord stem cells in the treatment of corneal disease," Surv. Ophthalmol., vol. 62, no. 6, pp. 803-815, 2017. https://doi.org/10.1016/j.survophthal.2017.02.002
          14. S. Roy, S. Arora, P. Kumari, and M. Ta, "A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells," Cryobiology, vol. 68, no. 3, 2014, doi: 10.1016/j.cryobiol.2014.03.010. https://doi.org/10.1016/j.cryobiol.2014.03.010
          15. A. C. Schnitzler et al., "Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges," Biochem. Eng. J., vol. 108, pp. 3-13, 2016. https://doi.org/10.1016/j.bej.2015.08.014
          16. S. Ramos García, "Células madre: potencial asombroso, desafiante demanda," 2014.
          17. Y. W. Eom et al., "The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells," Biochem. Biophys. Res. Commun., vol. 445, no. 1, pp. 16-22, 2014. https://doi.org/10.1016/j.bbrc.2014.01.084
          18. S. H. Hong et al., "Stem cell passage affects directional migration of stem cells in electrotaxis," Stem Cell Res., vol. 38, p. 101475, 2019. https://doi.org/10.1016/j.scr.2019.101475
          19. C. Rubio-Vargas, J. Alcázar, and L. Francis-Turner, "Influencia del factor de crecimiento fibroblástico 2 en células madre in vitro Estudio de revisión.," Actual. Biológicas, vol. 41, no. 110, 2019. https://doi.org/10.17533/udea.acbi.v41n111a03
          20. W. Wei and S. Ji, "Cellular senescence: molecular mechanisms and pathogenicity," J. Cell. Physiol., vol. 233, no. 12, pp. 9121-9135, 2018. https://doi.org/10.1002/jcp.26956
          21. V. Turinetto, E. Vitale, and C. Giachino, "Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy," Int. J. Mol. Sci., vol. 17, no. 7, p. 1164, 2016.
          22. https://doi.org/10.3390/ijms17071164
          23. L. Chuaire-Noack, C. García-Morcote, and S. R. Ramírez-Clavijo, "Actividad β-galactosidasa asociada con la senescenciChuaire-Noack, L., García-Morcote, C., & Ramírez-Clavijo, S. R. (2011). Actividad β-galactosidasa asociada con la senescencia en fibroblastos del estroma ovárico in vitro. Revista Ciencias de La Salud, 9," Rev. Ciencias la Salud, vol. 9, no. 1, pp. 17-31, 2011.
          24. S. Saez-Atienzar and E. Masliah, "Cellular senescence and Alzheimer disease: the egg and the chicken scenario," Nature Reviews Neuroscience, vol. 21, no. 8. 2020, doi: 10.1038/s41583-020-0325-z.
          25. https://doi.org/10.1038/s41583-020-0325-z
          26. K. Endo, N. Fujita, T. Nakagawa, and R. Nishimura, "Effect of fibroblast growth factor-2 and serum on canine mesenchymal stem cell chondrogenesis," Tissue Eng. Part A, vol. 25, no. 11-12, pp. 901-910, 2019.
          27. https://doi.org/10.1089/ten.tea.2018.0177
          28. Y. Zou, H. J. Tong, M. Li, K. S. Tan, and T. Cao, "Telomere length is regulated by FGF-2 in human embryonic stem cells and affects the life span of its differentiated progenies," Biogerontology, vol. 18, no. 1, pp. 69-84, 2017.
          29. https://doi.org/10.1007/s10522-016-9662-8
          30. F. Kottakis, C. Polytarchou, P. Foltopoulou, I. Sanidas, S. C. Kampranis, and P. N. Tsichlis, "FGF-2 Regulates Cell Proliferation, Migration, and Angiogenesis through an NDY1/KDM2B-miR-101-EZH2 Pathway," Mol. Cell, vol. 43, no. 2, 2011, doi: 10.1016/j.molcel.2011.06.020. https://doi.org/10.1016/j.molcel.2011.06.020
          31. T. Ito, R. Sawada, Y. Fujiwara, Y. Seyama, and T. Tsuchiya, "FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2," Biochem. Biophys. Res. Commun., vol. 359, no. 1, pp. 108-114, 2007. https://doi.org/10.1016/j.bbrc.2007.05.067
          32. L. M. de Souza, "Avaliação da indução de senescência e apoptose pelo tratamento com antraciclinas em fibroblastos humanos deficientes no reparo por excisão de nucleotídeos," 2011.
          33. M. Liu et al., "Adipose-derived mesenchymal stem cells from the elderly exhibit decreased migration and differentiation abilities with senescent properties," Cell Transplant., vol. 26, no. 9, pp. 1505-1519, 2017.
          34. https://doi.org/10.1177/0963689717721221
          35. W. Zhai et al., "Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions," Cytotherapy, vol. 21, no. 8. 2019, doi: 10.1016/j.jcyt.2019.05.001.
          36. https://doi.org/10.1016/j.jcyt.2019.05.001
          37. X. Meng, M. Xue, P. Xu, F. Hu, B. Sun, and Z. Xiao, "MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin," Genomics, vol. 109, no. 3-4, 2017, doi: 10.1016/j.ygeno.2017.02.003. https://doi.org/10.1016/j.ygeno.2017.02.003
          38. J. Franzen et al., "Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells," Aging Cell, vol. 16, no. 1, 2017, doi: 10.1111/acel.12544. https://doi.org/10.1111/acel.12544
          39. J. A. Arévalo Romero, D. Páez Guerrero, and V. M. Rodríguez Pardo, "Evaluación de características morfológicas e inmunofenotipo de células madre mesenquimales en cultivo obtenidas a partir de sangre de cordón umbilical y médula ósea.," Nova, vol. 5, no. 8, 2007, doi: 10.22490/24629448.380.
          40. https://doi.org/10.22490/24629448.380
          41. I. Fridlyanskaya, L. Alekseenko, and N. Nikolsky, "Senescence as a general cellular response to stress: a mini-review," Exp. Gerontol., vol. 72, pp. 124-128, 2015. https://doi.org/10.1016/j.exger.2015.09.021
          42. R. A. Avelar et al., "A multidimensional systems biology analysis of cellular senescence in aging and disease," Genome Biol., vol. 21, no. 1, 2020, doi: 10.1186/s13059-020-01990-9. https://doi.org/10.1186/s13059-020-01990-9
          43. D. N. Gala and Z. Fabian, "To Breathe or Not to Breathe: The Role of Oxygen in Bone Marrow-Derived Mesenchymal Stromal Cell Senescence," Stem Cells Int., vol. 2021, p. 8899756, 2021, doi: 10.1155/2021/8899756.
          44. https://doi.org/10.1155/2021/8899756
          45. J. Li et al., "Down-regulation of fibroblast growth factor 2 (FGF2) contributes to the premature senescence of mouse embryonic fibroblast," Med. Sci. Monit., vol. 26, 2020, doi: 10.12659/MSM.920520.
          46. https://doi.org/10.12659/MSM.920520
          47. U. Galderisi et al., "Efficient cultivation of neural stem cells with controlled delivery of FGF-2," Stem Cell Res., vol. 10, no. 1, 2013, doi: 10.1016/j.scr.2012.09.001. https://doi.org/10.1016/j.scr.2012.09.001
          48. A. Cieślar-Pobuda, J. Yue, H.-C. Lee, M. Skonieczna, and Y.-H. Wei, "ROS and oxidative stress in stem cells." Hindawi, 2017. https://doi.org/10.1155/2017/5047168
          49. R. A. Denu and P. Hematti, "Effects of oxidative stress on mesenchymal stem cell biology," Oxid. Med. Cell. Longev., vol. 2016, 2016. https://doi.org/10.1155/2016/2989076
          50. C. L. Bigarella, R. Liang, and S. Ghaffari, "Stem cells and the impact of ROS signaling," Development, vol. 141, no. 22, pp. 4206-4218, 2014. https://doi.org/10.1242/dev.107086
          51. Y. Liu and Q. Chen, "Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy," Curr. Mol. Biol. Reports, vol. 6, no. 4, 2020, doi: 10.1007/s40610-020-00141-0. https://doi.org/10.1007/s40610-020-00141-0
          52. T. Kamiya, M. Courtney, and M. O. Laukkanen, "Redox-activated signal transduction pathways mediating cellular functions in inflammation, differentiation, degeneration, transformation, and death." Hindawi, 2016.
          53. https://doi.org/10.1155/2016/8479718
          Sistema OJS 3.4.0.5 - Metabiblioteca |