ANÁLISIS TEMPORAL DEL COVID-19 EN COLOMBIA: INDICADORES ASOCIADOS Y MODELIZACIÓN
Contenido principal del artículo
Autores


Resumen
Este estudio muestra información estadística sobre el COVID-19 en Colombia a la fecha (1 de marzo de 2022). Específicamente, la evolución diaria, mensual y acumulada de contagios y defunciones, correlacionada con la distribución de la población según edad y sexo. Esta información puede ayudar a planificar y diseñar, en futuras pandemias, estrategias de política de salud pública. La información diaria desde la declaratoria oficial de pandemia en Colombia (16 de marzo de 2020) fue obtenida del Instituto Nacional de Salud (INS) y fue organizada en una base de datos para realizar los análisis respectivos. Esta información se comparó con estudios similares obtenidos a partir de revisión bibliográfica. Los resultados y conclusiones son similares a los encontrados en la literatura de referencia: la mayor parte de los fallecidos por COVID-19 son de edad avanzada y sexo masculino. En cuanto a la tasa de letalidad (CFR), ésta aumenta notoriamente con la edad. La población más vulnerable presenta una edad promedio ≥ 52.8 años. La población menos vulnerable son los jóvenes menores de 30 años, pero específicamente, los que se encuentran en el rango de edad de 10 y 20 años. Los modelos Gompertz y Logistic pueden simular matemáticamente la evolución de las muertes y la evolución de la CFR según la edad.
Palabras clave:
Detalles del artículo
Licencia
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Así mismo, los autores mantienen sus derechos de propiedad intelectual sobre los artículos.
Referencias
2. Xie M, Chen Q. Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2000;94:119-124. 10.1016/j.ijid.2020.03.071 1201-9712. https://doi.org/10.1016/j.ijid.2020.03.071
3. Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala N, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. 10.1016/j.arr.2020.101205 https://doi.org/10.1016/j.arr.2020.101205
4. Bauch CT, Oraby T. Assessing the pandemic potential of MERS-CoV. Lancet, 2013;382:662-664. 10.1016/S0140-6736(13)615044. https://doi.org/10.1016/S0140-6736(13)61504-4
5. Liu Y, Gayl AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020;27(2):1-4. 10.1093/jtm/taaa021. https://doi.org/10.1093/jtm/taaa021
6. Berber E, Sumbria D, Çanakoğlu N. Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. J Infect Public Health. 2021;14(8):1051-1064. 10.1016/j.jiph.2021.06.007. https://doi.org/10.1016/j.jiph.2021.06.007
7. WHO, Department of Communicable Disease Surveillance and Response World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS) p. 10. 2003. Retrieved from https://www.who.int/csr/sars/en/WHOconsensus.pdf. [Accessed 20 September 2021]
8. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Retrieved from https://applications.emro.who.int/docs/EMRPUB-CSR-241-2019-EN.pdf?ua=1%26ua=1%26ua=1%26ua=1%26ua=1%26ua=1 [Accessed 20 September 2021]
9. Guzman NA, De la Hoz-Restrepo F, Serrano-Coll H, Gastelbondo B, Mattar S. Using serological studies to assess COVID-19 infection fatality rate in developing countries: A case study from one Colombian department. Int J Infect Dis. 2021;110:4-5. 10.1016/j.ijid.2021.06.018. https://doi.org/10.1016/j.ijid.2021.06.018
10. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4):262-267. 10.7326/M20-1495. https://doi.org/10.7326/M20-1495
11. Fernández-Barat L, López-Aladid R, Torres A. The value of serology testing to manage SARS-CoV-2 infections. Eur Respir J. 2020;56(2):2002411. 10.1183/13993003.02411-2020. https://doi.org/10.1183/13993003.02411-2020
12. Xiao AT, Tong YX, Zhang, S. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. J Med Virol. 2020;92(10):1755-1756. 10.1002/jmv.25855.Epub 2020 Jul 11. https://doi.org/10.1002/jmv.25855
13. Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. Int J Infect Dis. 2020;101:138-148. https://doi.org/10.1016/j.ijid.2020.09.1464
14. Perlroth D, Glass RJ, Davey VJ, Cannon D, Garber AM, Owens DK. Health outcomes and costs of community mitigation strategies for an influenza pandemic in the United States. Clin Infect Dis. 2010;50(2):165-74. 10.1086/649867.
https://doi.org/10.1086/649867
15. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect Dis. 2020;20:669-77. 10.1016/S1473-3099(20)30243-7
16. Salje H, Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208-211. 10.1126/science.abc3517. https://doi.org/10.1126/science.abc3517
17. Roques L, Klein EK, Papaix J, Sar A, Soubeyrand S. Using early data to estimate the actual infection fatality ratio from Covid-19 in France. Biology. 2020;9(5):97. 10.3390/biology9050097. https://doi.org/10.3390/biology9050097
18. Dana S, Simas AB, Filardi BA, Rodriguez RN, Lane Valiengo L, Gallucci-Neto J. Brazilian modeling of COVID-19 (BRAM-COD): A Bayesian Monte Carlo approach for COVID-19 spread in a limited data set context. medRxiv. 2020;2020:1-41 10.1101/2020.04.29.20081174. https://doi.org/10.1101/2020.04.29.20081174
19. Mellan TA, Hoeltgebaum HH, Mishra S, Whittaker C, Schnekenberg RP, Gandy A, et al. Report 21: Estimating COVID-19 cases and reproduction number in Brazil. medRxiv. 2020:1-24. 10.1101/2020.05.09.20096701
20. Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-informed estimates of Sars-COV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020;21(4):e69-e70. 10.1016/S1473-3099(20)30584-3
https://doi.org/10.31219/osf.io/wdbpe
21. Marra V, Quartin M. Bayesian estimate of the early COVID-19 infection fatality ratio in Brazil based on a random seroprevalence survey. Int J Infect Dis. 2021;111:190-195. 10.1016/j.ijid.2021.08.016. https://doi.org/10.1016/j.ijid.2021.08.016
22. Luo G, Zhang X, Zheng H, He D. Infection fatality ratio and case fatality ratio of COVID-19. Int J Infect Dis. 2021;113:43-46. 10.1016/j.ijid.2021.10.004. https://doi.org/10.1016/j.ijid.2021.10.004
23. Gao J, Zheng P, Jia Y, Chen H, Mao Y, Chen S, et al. Mental health problems and social media exposure during COVID-19 outbreak. PloS One. 2020;15(4):e0231924. 10.1371/journal.pone.0231924. https://doi.org/10.1371/journal.pone.0231924
24. Rodriguez-Nava G, Yanez-Bello MA, Trelles-Garcia DP, Chung CW, Chaudry S, Khan AS, et al. Clinical characteristics and risk factors for mortality of hospitalized patients with COVID-19 in a community hospital: a retrospective cohort study. Mayo Clin Proc Innov Qual Outcomes. 2021;5(1):1-10. 10.1016/j.mayocpiqo.2020.10.007. https://doi.org/10.1016/j.mayocpiqo.2020.10.007
25. Liu S, Yang L, Zhang C, Xiang Y, Liu Z, Hu S. et al. Online mental health services in China during the COVID19 outbreak. The lancet Psychiatry. 2020;7(4):e17-e18. 10.1016/S2215-0366(20)30077-8. https://doi.org/10.1016/S2215-0366(20)30077-8
26. García-Posada M, Aruachan-Vesga S, Mestra D, Humánez K, Serrano-Coll H, Cabrales H, et al. Clinical outcomes of patients hospitalized for COVID-19 and evidence-based on the pharmacological management reduce mortality in a region of the Colombian Caribbean. J Infect Public Health. 2021;14(6):696-701. 10.1016/j.jiph.2021.02.013
https://doi.org/10.1016/j.jiph.2021.02.013
27. Sharma P, Sharma R. Impact of covid-19 on mental health and aging. Saudi J Biol Sci. 2021;28(12): 7046-7053. 10.1016/j.sjbs.2021.07.087. https://doi.org/10.1016/j.sjbs.2021.07.087
28. Aguiar M, Stollenwerk N. Condition-specific mortality risk can explain differences in COVID-19 case fatality ratios around the globe. Public Health. 2020;188:18-20. 10.1016/j.puhe.2020.08.021. https://doi.org/10.1016/j.puhe.2020.08.021
29. Guan W-J, Liang W-H, Zhao Y, Liang H-R, Chen Z-S, Li Y-M, et al. Comorbidity and its impact on 1590 patients with covid-19 in China: a nationwide analysis. Eur Respir J 2020;55(5):2000547. 10.1183/13993003.00547-2020. https://doi.org/10.1183/13993003.01227-2020
30. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, Mcginn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020;323(20):2052e9. 10.1001/jama.2020.6775. https://doi.org/10.1001/jama.2020.6775
31. Yang W, Kandula S, Huynh M, Greene S, Van Wye G, Li W, et al. Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis. Lancet Infect Dis. 2021;21(2):203-212. 10.1016/S1473-3099(20)30769-6. https://doi.org/10.1016/S1473-3099(20)30769-6
32. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95. 10.1016/j.ijid.2020.03.017
https://doi.org/10.1016/j.ijid.2020.03.017
33. Xiong D, Zhang L, Watson GL, Sundin P, Bufford T, Zoller JA, et al. Pseudo-likelihood based logistic regression for estimating COVID-19 infection and case fatality rates by gender, race, and age in California. Epidemics. 2020;33:100418. 10.1016/j.epidem.2020.100418. https://doi.org/10.1016/j.epidem.2020.100418
34. Alshogran OY, Altawalbeh SM, Al-Azzam SI, Karasneh R. Predictors of Covid-19 case fatality rate: An ecological study. Ann Med Surg. 2021;65:102319. 10.1016/j.amsu.2021.102319. https://doi.org/10.1016/j.amsu.2021.102319
35. Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county versus zip code analyses. J Public Health Manag Pract. 2021;27:S46-S56. 10.1097/PHH.0000000000001263
https://doi.org/10.1097/PHH.0000000000001263
36. Abate SM, Chekole YA, Estifanos M, Abate KH, Kabthymer RH. Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: A systematic review and meta-analysis. Clinical Nutrition ESPEN. 2021;43:174-183. 10.1016/j.clnesp.2021.03.002. https://doi.org/10.1016/j.clnesp.2021.03.002
37. Díaz-Guio DA, Villamil-Gómez WE, Dajud L, Pérez-Díaz CE, Bonilla-Aldana K, Mondragón A, et al. Will the Colombian intensive care units collapse due to the COVID-19 pandemic? Travel Med Infect Dis. 2020;38:101746. 10.1016/j.tmaid.2020.101746. https://doi.org/10.1016/j.tmaid.2020.101746
38. Rodriguez-Villamizar LA, Belalcázar-Ceron LC, Fernández-Niño JA, Marín-Pineda DM, Rojas OA, Acuña L, et al. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Sci Total Environ. 2021;756:144020. 10.1016/j.scitotenv.2020.144020. https://doi.org/10.1016/j.scitotenv.2020.144020
39. Rondón-Quintana HA, Zafra-Mejía CA. Covid 19 death analysis in Colombia. Revista Cuidarte. 2021;12(3):e1528. 10.15649/cuidarte.1528. https://doi.org/10.15649/cuidarte.1528
40. Mikiko W, Risi R, Tuccinardi D. Obesity and SARS-CoV-2: a population to safeguard. Diabetes Metab Res Rev. 2020;36:e3325. 10.1002/dmrr.3325
41. Sánchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. Respir Med. 2020;171:106096. 10.1016/j.rmed.2020.10609639. https://doi.org/10.1016/j.rmed.2020.106096
42. Sharma A, Garg A, Rout A, Lavie CJ. Association of obesity with more critical illness in COVID-19. Mayo Clinic Proc. 2020;95(9):2040-2042. 10.1016/j.mayocp.2020.06.046. https://doi.org/10.1016/j.mayocp.2020.06.046
43. Sharma JR, Yadav U.C.S. COVID-19 severity in obese patients: potential mechanisms and molecular targets for clinical intervention. Obes Res Clin Pract. 2021;15(2):163-171. 10.1016/j.orcp.2021.01.004. https://doi.org/10.1016/j.orcp.2021.01.004
44. Yadav R, Aggarwal S, Singh A. SARS-CoV-2-host dynamics: Increased risk of adverse outcomes of COVID-19 in obesity. Diabetes Metab Syndr: Clinical Res & Rev. 2020;14(5):1355-1360. 10.1016/j.dsx.2020.07.030. https://doi.org/10.1016/j.dsx.2020.07.030
45. Landecho MF, Marin-Oto M, Recalde-Zamacona B, Bilbao I, Frühbeck G. Obesity as an adipose tissue dysfunction disease and a risk factor for infections - Covid-19 as a case study. Eur J Intern Med. 2021;91:3-9. 10.1016/j.ejim.2021.03.031
https://doi.org/10.1016/j.ejim.2021.03.031
46. Stefano M, Andrea B, Daniela C, Emanuela M, Lorena P, Daniela D, et al. Malnutrition risk as a negative prognostic factor in COVID-19 patients. Clinical Nutrition ESPEN. 2021;45:369-373. 10.1016/j.clnesp.2021.07.016
https://doi.org/10.1016/j.clnesp.2021.07.016
47. Mertz D, Kim TH, Johnstone J, Lam PP, Science M, Kuster SP, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ., 2013;347:f5061. 10.1136/bmj.f5061
https://doi.org/10.1136/bmj.f5061
48. Pearce DC, McCaw JM, McVernon J, Mathews JD. Influenza as a trigger for cardiovascular disease: An investigation of serotype, subtype and geographic location. Environ Res. 2017;156:688-696. 10.1016/j.envres.2017.04.024.
https://doi.org/10.1016/j.envres.2017.04.024
49. Goeijenbier M, van Sloten TT, Slobbe L, Mathieuf C, van Genderen P, Beyer W, Osterhaus A. Benefits of flu vaccination for persons with diabetes mellitus: A review. Vaccine. 2017;35(38):5095-5101. 10.1016/j.vaccine.2017.07.095.
https://doi.org/10.1016/j.vaccine.2017.07.095
50. Tekin S, Keske S, Alan S, Batirel A, Karakoc C, Tasdelen-Fisgin N, et al. Predictors of fatality in influenza A virus subtype infections among inpatients in the 2015-2016 season. Int J Infect Dis. 2019;81:6-9. 10.1016/j.ijid.2019.01.005
https://doi.org/10.1016/j.ijid.2019.01.005
51. Zhang ZXZ, Kyaw W, Ho HJ, Tay MZ, Huang H, Hein AA, et al. Seasonal influenza-associated intensive care unit admission and death in tropical Singapore, 2011-2015. J Clin Virol. 2019;117:73-79. 10.1016/j.jcv.2019.06.005
https://doi.org/10.1016/j.jcv.2019.06.005
52. Zou Q, Zheng S, Wang X, Liu S, Bao J, Yu F, et al. Influenza A-associated severe pneumonia in hospitalized patients: Risk factors and NAI treatments. Int J Infect Dis. 2020;92:208-213. 10.1016/j.ijid.2020.01.017.
https://doi.org/10.1016/j.ijid.2020.01.017
53. Polidori MC, Sies H, Ferrucci L, Benzing T. COVID-19 mortality as a fingerprint of biological age. Ageing Res Rev. 2021;67:101308. 10.1016/j.arr.2021.101308. https://doi.org/10.1016/j.arr.2021.101308
54. Tian F, Liu X, Chao Q, Qian Z, Zhang S, Qi L, et al. Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China. The Innovation. 2021;2(3):100139. 10.1016/j.xinn.2021.100139. https://doi.org/10.1016/j.xinn.2021.100139
55. Henao-Cespedes V, Garcés-Gómez YA, Ruggeri S, Henao-Cespedes TM. Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia. Egypt J Remote Sens Space Sci. 2021, in press. 10.1016/j.ejrs.2021.04.002. https://doi.org/10.1016/j.ejrs.2021.04.002
56. Sepulveda ER, Brooker A. Income inequality and COVID-19 mortality: Age-stratified analysis of 22 OECD countries. SSM - Population Health. 2021;16:100904. 10.1016/j.ssmph.2021.100904. https://doi.org/10.1016/j.ssmph.2021.100904
57. Wildman J. COVID-19 and income inequality in OECD countries. Eur. J. Health Econ. 2021;22(3):455-462. 10.1007/s10198-021-01266-4. https://doi.org/10.1007/s10198-021-01266-4
58. Ghosh D, Bernstein JA, Mersha TB. COVID-19 pandemic: the African paradox. J Glob Health. 2020;10(2):020348. 10.7189/jogh.10.020348. https://doi.org/10.7189/jogh.10.020348
59. Lawal Y. Africa's low COVID-19 mortality rate: a paradox? Int. J. Infect. Dis. 2020;102:118-122. 10.1016/j.ijid.2020.10.038.
https://doi.org/10.1016/j.ijid.2020.10.038
60. Birner R, Blaschke N, Bosch C, Daum T, Graf S, Guttler D et al. 'We would rather die from Covid-19 than from hunger' - Exploring lockdown stringencies in five African countries. Glob Food Sec. 2021;31:100571. 10.1016/j.gfs.2021.100571.
https://doi.org/10.1016/j.gfs.2021.100571
61. Kulohoma BW. COVID-19 risk factors: The curious case of Africa's governance and preparedness. Scientific African. 2021;13:e00948. 10.1016/j.sciaf.2021.e00948. https://doi.org/10.1016/j.sciaf.2021.e00948
62. Ngere I, Dawa J, Hunsperger E, Otieno N, Masika M, Amoth P, et al. High seroprevalence of SARS-CoV-2 but low infection fatality ratio eight months after introduction in Nairobi, Kenya. Int J Infect Dis. 2021;112:25-34. 10.1016/j.ijid.2021.08.062. https://doi.org/10.1016/j.ijid.2021.08.062
63. Njenga MK, Dawa J, Nanyingi M, Gachohi J, Ngere I, Letko M, et al. Why is There Low Morbidity and Mortality of COVID-19 in Africa? Am J Trop Med Hyg 2020;103:564-9. 10.4269/ajtmh.20-0474. https://doi.org/10.4269/ajtmh.20-0474
64. Diop BZ, Ngom M, Biyong CP, Biyong JNP. The relatively young and rural population may limit the spread and severity of COVID-19 in Africa: a modelling study. BMJ Glob Health. 2020;5:e002699. 10.1136/bmjgh-2020-002699. https://doi.org/10.1136/bmjgh-2020-002699
65. Afolabi MO, Folayan MO, Munung NS, Yakubu A, Ndow G, Jegede A, Ambe J, Kombe F. Lessons from the Ebola epidemics and their applications for COVID-19 pandemic response in sub-Saharan Africa. Dev. World Bioeth. 2021;21(1):25-30. 10.1111/dewb.12275. https://doi.org/10.1111/dewb.12275
66. Tso FY, Lidenge SJ, Peña PB, Clegg AA, Ngowi JR, Mwaiselage J, et al. High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa. Int J Infect Dis. 2021;102:577-583. 10.1016/j.ijid.2020.10.104. https://doi.org/10.1016/j.ijid.2020.10.104
67. Benítez MA, Velasco C, Sequeira AR, Henríquez J, Menezes F, Paolucci F. Responses to COVID-19 in five Latin American countries. Health Policy Technol. 2020;9(4):525-559. 10.1016/j.hlpt.2020.08.014. https://doi.org/10.1016/j.hlpt.2020.08.014
68. Han J, Shi L-X, Xie Y, Zhang Y-J, Huang S-P, Li J-G, et al. Analysis of factors affecting the prognosis of COVID-19 patients and viral shedding duration. Epidemiol Infect. 2020;148:e125. 10.1017/S0950268820001399. https://doi.org/10.1017/S0950268820001399
69. Rosas F, Vargas JP. 2015. Capacidad de respuesta hospitalaria distrital en Bogotá ante un evento con múltiples víctimas. Especialización en Medicina de Emergencias, Universidad del Rosario. https://repository.urosario.edu.co/handle/10336/10154
70. Guerrero N, Yépez-Ch M C. Factores asociados a la vulnerabilidad del adulto mayor con alteraciones de salud [Factors associated with the vulnerability of the elderly with health disorders]. Universidad y Salud. 2015;17(1):121-31.
71. Sánchez-Villegas P, Daponte A. Modelos predictivos de la epidemia de COVID-19 en España con curvas de Gompertz. Gaceta Sanitaria. 2021;35(6):585-589. 10.1016/j.gaceta.2020.05.005. https://doi.org/10.1016/j.gaceta.2020.05.005
72. Torrealba-Rodriguez O, Conde-Gutiérrez RA, Hernández-Javier AL. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos, Solitons & Fractals. 2020;138:109946. 10.1016/j.chaos.2020.109946. https://doi.org/10.1016/j.chaos.2020.109946
73. Shen CY. Logistic growth modelling of COVID-19 proliferation in China and its international implications. Int J Infect Dis. 2020;96:582-589. 10.1016/j.ijid.2020.04.085. https://doi.org/10.1016/j.ijid.2020.04.085
74. Aviv-Sharon E, Aharoni A. Generalized logistic growth modeling of the COVID-19 pandemic in Asia. Infect Dis Model. 2020;5:502-509. 10.1016/j.idm.2020.07.003. https://doi.org/10.1016/j.idm.2020.07.003
75. Wang P, Zheng X, Li J, Zhu B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons & Fractals. 2020;139:110058. 10.1016/j.chaos.2020.110058. https://doi.org/10.1016/j.chaos.2020.110058
76. Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N, et al. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomedical J. 2021;44(3):304-316. 10.1016/j.bj.2021.02.006. https://doi.org/10.1016/j.bj.2021.02.006
77. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020;180(7):934-943. 10.1001/jamainternmed.2020.0994. https://doi.org/10.1001/jamainternmed.2020.0994
78. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727-733. 10.1056/NEJMoa2001017. https://doi.org/10.1056/NEJMoa2001017