Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Fisiopatología y alteraciones clínicas de la diabetes mellitus tipo 2

Fisiopatología y alteraciones clínicas de la diabetes mellitus tipo 2 Revisión de literatura



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Jerez Fernández, C. I., Medina Pereira, Y. A., Ortiz Chang, A. S., González Olmedo, S. I., & Aguirre Gaete, M. C. (2022). Fisiopatología y alteraciones clínicas de la diabetes mellitus tipo 2: Revisión de literatura. REVISTA NOVA , 20(38). https://doi.org/10.22490/24629448.6184

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

La diabetes mellitus tipo 2 constituye una condición clínica debilitante, degenerativa y multifacética de alta prevalencia a nivel mundial. Dada la complejidad de su fisiopatología y las variadas opciones terapéuticas que existen esta enfermedad presenta un desafío para el médico general, se hace imperativo describir comprensiblemente esta patología para mejorar la resolutividad de ésta en atención primaria. Tras una búsqueda bibliográfica exhaustiva de 103 estudios publicados hasta el año 2010, se identificaron los aspectos más importantes tanto de la fisiología, fisiopatología, complicaciones y terapéuticas de esta patología. La resistencia a la insulina (RI) es una condición metabólica central en la etiopatogenia de esta patología donde se logra reconocer de manera clásica tanto la pérdida de la acción periférica de la insulina por parte de los diferentes tejidos, así como defectos en la secreción de insulina conllevando estados de hiperglucemia constantes asociados tanto a complicaciones agudas como crónicas caracterizadas por provocar disfunción y fallo en diferentes órganos. Es de conocimiento general que parte importante de los resultados en el manejo de esta patología se logran con cambios en el estilo de vida que van desde modificaciones en la dieta a cambios en el patrón de actividad física con pérdida de peso corporal. No obstante, existe a su vez una amplia gama de terapias farmacológicas orientadas a controlar estados hiperglucémicos ante la falla de la terapia no farmacológica. Dentro de este mismo contexto varias son las dianas y objetivos terapéuticos en el tratamiento del diabético tipo 2, sin embargo, todas confluyen en el control metabólico de los estados de hiperglucemia y la prevención de sus complicaciones.


Visitas del artículo 6728 | Visitas PDF 12238


Descargas

Los datos de descarga todavía no están disponibles.
  1. Galicia-García U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):1-34. doi:10.3390/ijms21176275
  2. https://doi.org/10.3390/ijms21176275
  3. International diabetes federation. International diabetes federation. International diabetes federation.
  4. Petersen M, Vatner D. Regulation of hepatic glucose metabolism in health and disease. HHS Public Access. 2018;13(10):572-587. doi:10.1038/nrendo.2017.80.Regulation
  5. https://doi.org/10.1038/nrendo.2017.80
  6. Dashty M. A quick look at biochemistry: Carbohydrate metabolism. Clin Biochem. 2013;46(15):1339-1352. doi:10.1016/j.clinbiochem.2013.04.027
  7. https://doi.org/10.1016/j.clinbiochem.2013.04.027
  8. Keane K, Newsholme P. Metabolic Regulation of Insulin Secretion. Vol 95. 1st ed. Elsevier Inc.; 2014. doi:10.1016/B978-0-12-800174-5.00001-6
  9. https://doi.org/10.1016/B978-0-12-800174-5.00001-6
  10. Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol. 2018;217(7):2273-2289. doi:10.1083/jcb.201802095
  11. https://doi.org/10.1083/jcb.201802095
  12. de Jesús Sandoval-Muñiz R, Vargas-Guerrero B, Flores-Alvarado LJ, Gurrola-Díaz CM. Glucotransportadores (GLUT): Aspectos clínicos, moleculares y genéticos. Gac Med Mex. 2016;152(4):547-557.
  13. Holst JJ. The incretin system in healthy humans: The role of GIP and GLP-1. Metabolism. 2019;96:46-55. doi:10.1016/j.metabol.2019.04.014
  14. https://doi.org/10.1016/j.metabol.2019.04.014
  15. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819-837. doi:10.1016/j.cmet.2013.04.008
  16. https://doi.org/10.1016/j.cmet.2013.04.008
  17. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4(6):525-536. doi:10.1016/S2213-8587(15)00482-9
  18. https://doi.org/10.1016/S2213-8587(15)00482-9
  19. DeFronzo RA, Davidson JA, del Prato S. The role of the kidneys in glucose homeostasis: A new path towards normalizing glycaemia. Diabetes, Obes Metab. 2012;14(1):5-14. doi:10.1111/j.1463-1326.2011.01511.x
  20. https://doi.org/10.1111/j.1463-1326.2011.01511.x
  21. Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res. 2020;2020. doi:10.1155/2020/8492467
  22. https://doi.org/10.1155/2020/8492467
  23. Gutiérrez-Rodelo C, Roura-Guiberna A, Olivares-Reyes JA. Mecanismos moleculares de la resistencia a la insulina: Una actualización. Gac Med Mex. 2017;153(2):214-228.
  24. Díaz S. Papel de las isoformas del receptor de insulina en la regulación de la homeostasia glucídica y lipídica en un modelo de diabetes experimental. Published online 2017:1.106. https://eprints.ucm.es/43693/1/T39014.pdf
  25. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22. doi:10.1172/JCI77812
  26. https://doi.org/10.1172/JCI77812
  27. Visser M, Mcquillan GM, Wener MH, Harris TB. Elevated C-Reactive Protein Levels. Published online 2015.
  28. Ros Pérez M, Medina-Gómez G. Obesidad, adipogénesis y resistencia a la insulina. Endocrinol y Nutr. 2011;58(7):360-369. doi:10.1016/j.endonu.2011.05.008
  29. https://doi.org/10.1016/j.endonu.2011.05.008
  30. Conesa González AI, González Calero TM. Aspectos más recientes en relación con la diabetes mellitus tipo MODY. Rev Cuba Endocrinol. 2012;23(2):186-194.
  31. Ozougwu O. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4(4):46-57. doi:10.5897/jpap2013.0001
  32. https://doi.org/10.5897/JPAP2013.0001
  33. Kluth O, Mirhashemi F, Scherneck S, et al. Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: Role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia. 2011;54(3):605-616. doi:10.1007/s00125-010-1973-8
  34. https://doi.org/10.1007/s00125-010-1973-8
  35. Cano R, Villalobos M, Aguirre M, et al. Tisular Y No Una Enfermedad From Obesity To Diabetes: Insulin-Resistance. Published online 2017.
  36. Alam F, Kamal MA, Islam MA, Banu S. Current Genetic and Epigenetic Insights into Type 2 Diabetes Mellitus. Endocrine, Metab Immune Disord - Drug Targets. 2019;19(6):717-718. doi:10.2174/187153031906190724104004
  37. https://doi.org/10.2174/187153031906190724104004
  38. Suárez-Carmona W, Sánchez-Oliver AJ, González-Jurado JA. Fisiopatología de la obesidad: Perspectiva actual. Rev Chil Nutr. 2017;44(3):226-233. doi:10.4067/s0717-75182017000300226
  39. https://doi.org/10.4067/S0717-75182017000300226
  40. Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci. 2015;52(6):301-313. doi:10.3109/10408363.2015.1041582
  41. https://doi.org/10.3109/10408363.2015.1041582
  42. Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742-753. doi:10.1038/s41579-019-0256-8
  43. https://doi.org/10.1038/s41579-019-0256-8
  44. Devaraj S, Hemarajata P, Versalovic J. La microbiota intestinal humana y el metabolismo corporal: Implicaciones con la obesidad y la diabetes. Acta Bioquim Clin Latinoam. 2013;47(2):421-434.
  45. Palau-Rodriguez M, Tulipani S, Queipo-Ortuño MI, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol. 2015;6(OCT):1-12. doi:10.3389/fmicb.2015.01151
  46. https://doi.org/10.3389/fmicb.2015.01151
  47. Tilg H, Moschen AR. Microbiota and diabetes: An evolving relationship. Gut. 2014;63(9):1513-1521. doi:10.1136/gutjnl-2014-306928
  48. https://doi.org/10.1136/gutjnl-2014-306928
  49. Larsen N, Vogensen FK, Van Den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2). doi:10.1371/journal.pone.0009085
  50. https://doi.org/10.1371/journal.pone.0009085
  51. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658-668. doi:10.1016/j.cmet.2015.07.026
  52. https://doi.org/10.1016/j.cmet.2015.07.026
  53. Sliwinska-Mosson M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diabetes Vasc Dis Res. 2017;14(4):265-276. doi:10.1177/1479164117701876
  54. https://doi.org/10.1177/1479164117701876
  55. López Zubizarreta M, Hernández Mezquita MÁ, Miralles García JM, Barrueco Ferrero M. Tobacco and diabetes: clinical relevance and approach to smoking cessation in diabetic smokers. Endocrinol Diabetes y Nutr. 2017;64(4):221-231. doi:10.1016/j.endinu.2017.02.010
  56. https://doi.org/10.1016/j.endinu.2017.02.010
  57. Besingi W, Johansson Å. Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet. 2014;23(9):2290-2297. doi:10.1093/hmg/ddt621
  58. https://doi.org/10.1093/hmg/ddt621
  59. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-2251. doi:10.1016/S0140-6736(17)30058-2
  60. https://doi.org/10.1016/S0140-6736(17)30058-2
  61. Risk NCD, Collaboration F. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England). 2016;387(10027):1513-1530. doi:10.1016/S0140-6736(16)00618-8
  62. https://doi.org/10.1016/S0140-6736(16)00618-8
  63. Fu Z, R. Gilbert E, Liu D. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Curr Diabetes Rev. 2012;9(1):25-53. doi:10.2174/15733998130104
  64. https://doi.org/10.2174/15733998130104
  65. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: From pathophysiology to prevention and management. Lancet. 2011;378(9786):169-181. doi:10.1016/S0140-6736(11)60614-4
  66. https://doi.org/10.1016/S0140-6736(11)60614-4
  67. Corkey BE. Banting lecture 2011: Hyperinsulinemia: Cause or consequence? Diabetes. 2012;61(1):4-13. doi:10.2337/db11-1483
  68. https://doi.org/10.2337/db11-1483
  69. Jeffrey KD, Alejandro EU, Luciani DS, et al. Carboxypeptidase E mediates palmitate-induced β-cell ER stress and apoptosis. Proc Natl Acad Sci U S A. 2008;105(24):8452-8457. doi:10.1073/pnas.0711232105
  70. https://doi.org/10.1073/pnas.0711232105
  71. Staaf J, Ubhayasekera SJKA, Sargsyan E, et al. Initial hyperinsulinemia and subsequent β-cell dysfunction is associated with elevated palmitate levels. Pediatr Res. 2016;80(2):267-274. doi:10.1038/pr.2016.80
  72. https://doi.org/10.1038/pr.2016.80
  73. Vincent Poitout, Julie Amyot, Meriem Semache, Bader Zarrouki, Derek Hagman GF. Glucoliotoxicity of pancreatic beta cells. Biochim Biophys Acta. 2010;1801(3):289-298. doi:10.1016/j.bbalip.2009.08.006.Glucolipotoxicity
  74. https://doi.org/10.1016/j.bbalip.2009.08.006
  75. Mccormack SE, Shaham O, Mccarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8(1):52-61. doi:10.1111/j.2047-6310.2012.00087.x
  76. https://doi.org/10.1111/j.2047-6310.2012.00087.x
  77. Thomas J. Wang, Martin G. Larson, Ramachandran S. Vasan, Susan Cheng, Eugene P. Rhee, Elizabeth McCabe, Gregory D. Lewis, Caroline S. Fox, Paul F. Jacques, Céline Fernandez, Christopher J. O'Donnell, Stephen A. Carr, Vamsi K. Mootha, Jose C. Florez, Amand CB, Clish and REG. Metabolite profiles and diabetes. Nat Med. 2011;17(4):448-453. doi:10.1038/nm.2307.Metabolite
  78. https://doi.org/10.1038/nm.2307
  79. Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother. 2018;107(April):306-328. doi:10.1016/j.biopha.2018.07.157
  80. https://doi.org/10.1016/j.biopha.2018.07.157
  81. Maletkovic J, Drexler A. Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Endocrinol Metab Clin North Am. 2013;42(4):677-695. doi:10.1016/j.ecl.2013.07.001
  82. https://doi.org/10.1016/j.ecl.2013.07.001
  83. Cepas V, Collino M, Mayo JC, Sainz RM. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants. 2020;9(2):1-20. doi:10.3390/antiox9020142
  84. https://doi.org/10.3390/antiox9020142
  85. Perrone A, Giovino A, Benny J, Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev. 2020;2020(Cml). doi:10.1155/2020/3818196
  86. https://doi.org/10.1155/2020/3818196
  87. Mosquera JA. Papel del receptor para compuestos de glicosilación avanzada (RAGE) en la inflamación. Invest Clin. 2010;51(2):257-268.
  88. L. Díaz-Casasola DL-P. Productos finales de glicación avanzada. Med e Investig. 2016;4(1):52-57.
  89. https://doi.org/10.1016/j.mei.2016.02.002
  90. Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279-301. doi:10.1007/s10522-019-09808-3
  91. https://doi.org/10.1007/s10522-019-09808-3
  92. Olmos PR, Niklitschek S, Olmos RI, et al. Bases fisiopatológicas para una clasificación de la neuropatía diabética A new physiopathological classification of diabetic neuropathy. artículo revisión rev Med chile. 2012;140:1593-1605.
  93. https://doi.org/10.4067/S0034-98872012001200012
  94. Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018;61(1):29-38. doi:10.1007/s00125-017-4435-8
  95. https://doi.org/10.1007/s00125-017-4435-8
  96. Umanath K, Lewis JB. Update on Diabetic Nephropathy: Core Curriculum 2018. Am J Kidney Dis. 2018;71(6):884-895. doi:10.1053/j.ajkd.2017.10.026
  97. https://doi.org/10.1053/j.ajkd.2017.10.026
  98. Meza Letelier CE, San Martín Ojeda CA, Ruiz Provoste JJ, Frugone Zaror CJ. Pathophysiology of diabetic nephropathy: a literature review. Medwave. 2017;17(1):e6839. doi:10.5867/medwave.2017.01.6839
  99. https://doi.org/10.5867/medwave.2017.01.6839
  100. Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci. 2019;20(14). doi:10.3390/ijms20143393
  101. https://doi.org/10.3390/ijms20143393
  102. Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol. 2021;12(August):1-23. doi:10.3389/fphar.2021.701390
  103. https://doi.org/10.3389/fphar.2021.701390
  104. Tervaert TWC, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-563. doi:10.1681/ASN.2010010010
  105. https://doi.org/10.1681/ASN.2010010010
  106. Botas Velasco M, Cervell Rodríguez D, Rodríguez Montalbán AI, Vicente Jiménez S, Fernández de Valderrama Martínez I. An update on the diagnosis, treatment and prevention of diabetic peripheral neuropathy. Angiologia. 2017;69(3):174-181. doi:10.1016/j.angio.2016.06.005
  107. https://doi.org/10.1016/j.angio.2016.06.005
  108. Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic Neuropathy. Endocrinol Metab Clin North Am. 2013;42(4):747-787. doi:10.1016/j.ecl.2013.06.001
  109. https://doi.org/10.1016/j.ecl.2013.06.001
  110. Yu Y, Zhou Z, Sun K, et al. Association between coronary artery atherosclerosis and plasma glucose levels assessed by dual-source computed tomography. J Thorac Dis. 2018;10(11):6050-6059. doi:10.21037/jtd.2018.10.62
  111. https://doi.org/10.21037/jtd.2018.10.62
  112. Barrett TJ. Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20-33. doi:10.1161/ATVBAHA.119.312802
  113. https://doi.org/10.1161/ATVBAHA.119.312802
  114. Moore KJ, Tabas I. The Cellular Biology of Macrophages in Atherosclerosis. Cell. 2011;145(3):341-355. doi:10.1016/j.cell.2011.04.005.The
  115. https://doi.org/10.1016/j.cell.2011.04.005
  116. Martín-Timón I. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes. 2014;5(4):444. doi:10.4239/wjd.v5.i4.444
  117. https://doi.org/10.4239/wjd.v5.i4.444
  118. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. doi:10.1161/CIRCRESAHA.110.223545
  119. https://doi.org/10.1161/CIRCRESAHA.110.223545
  120. Geraldes P, King GL. Emission security- Tempest Attacks. Circ Res. 2010;106(8):1319-1331. doi:10.1161/CIRCRESAHA.110.217117.Activation
  121. https://doi.org/10.1161/CIRCRESAHA.110.217117
  122. Cruz Hernández J, no Licea Puig ME, ar Hernández García P, is Yanes Quesada M. Aldosa reductasa y proteína quinasa C en las complicaciones crónicas de la diabetes mellitus. Rev Latinoam Patol Clínica y Med Lab. 2011;58(2):102-107.
  123. Mu EG, Ang M, Escorza Q. Estrés oxidativo y diabetes mellitus. REB Rev Educ bioquímica. 2013;32(2):53-66.
  124. Carvajal Carvajal C. Productos finales de glicación (AGES) y la nefropatía diabética. Med Leg Costa Rica. 2015;32(1):154-160.
  125. Muntoni S, Muntoni S. Insulin resistance: Pathophysiology and rationale for treatment. Ann Nutr Metab. 2011;58(1):25-36. doi:10.1159/000323395
  126. https://doi.org/10.1159/000323395
  127. Bornfeldt K, Tabas I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Bone. 2011;23(1):1-20. doi:10.1016/j.cmet.2011.07.015.Insulin
  128. Basal Insulin and Cardiovascular and Other Outcomes in Dysglycemia. N Engl J Med. 2012;367(4):319-328. doi:10.1056/nejmoa1203858
  129. https://doi.org/10.1056/NEJMoa1203858
  130. Goldberg I, Schulze C. Lipid Metabolism and Toxicity in the Heart. Cell metab. 2012;23(1):1-16. doi:10.1016/j.cmet.2012.04.006.Lipid
  131. Moghetti P, Tosi F, Bonin C, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):628-637. doi:10.1210/jc.2012-3908
  132. https://doi.org/10.1210/jc.2012-3908
  133. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030. doi:10.1210/er.2011-1034
  134. https://doi.org/10.1210/er.2011-1034
  135. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism. 2016;65(8):1096-1108. doi:10.1016/j.metabol.2016.01.001
  136. https://doi.org/10.1016/j.metabol.2016.01.001
  137. Ramos-Molina B, Macías-González M, TINAHONES F. Hígado graso no alcohólico y diabetes tipo 2: epidemiología, fenotipo y fisiopatología del paciente con diabetes e hígado graso no alcohólico. Endocrinol Diabetes y Nutr. 2017;1(Supl.2):16-20.
  138. Hamdy O, Barakatun-Nisak MY. Nutrition in Diabetes. Endocrinol Metab Clin North Am. 2016;45(4):799-817. doi:10.1016/j.ecl.2016.06.010
  139. https://doi.org/10.1016/j.ecl.2016.06.010
  140. Carvallo P, Carvallo E, Barbosa-Da-Silva S, Mandarim-De-Lacerda CA, Hernández A, Del Sol M. Metabolic effects of excessive fructose consumption added. Int J Morphol. 2019;37(3):1058-1066. doi:10.4067/S0717-95022019000301058
  141. https://doi.org/10.4067/S0717-95022019000301058
  142. Huhmann MB, Yamamoto S, Neutel JM, Cohen SS, Ochoa Gautier JB. Very high-protein and low-carbohydrate enteral nutrition formula and plasma glucose control in adults with type 2 diabetes mellitus: a randomized crossover trial. Nutr Diabetes. 2018;8(1). doi:10.1038/s41387-018-0053-x
  143. https://doi.org/10.1038/s41387-018-0053-x
  144. Chiu THT, Pan WH, Lin MN, Lin CL. Vegetarian diet, change in dietary patterns, and diabetes risk: A prospective study. Nutr Diabetes. 2018;8(1). doi:10.1038/s41387-018-0022-4
  145. https://doi.org/10.1038/s41387-018-0022-4
  146. Henry CJ, Kaur B, Quek RYC. Chrononutrition in the management of diabetes. Nutr Diabetes. 2020;10(1). doi:10.1038/s41387-020-0109-6
  147. https://doi.org/10.1038/s41387-020-0109-6
  148. Vetrivel Venkatasamy V, Pericherla S, Manthuruthil S, Mishra S, Hanno R. Effect of physical activity on insulin resistance, inflammation and oxidative stress in diabetes mellitus. J Clin Diagnostic Res. 2013;7(8):1764-1766. doi:10.7860/JCDR/2013/6518.3306
  149. https://doi.org/10.7860/JCDR/2013/6518.3306
  150. Hernández J, Licea M. Role of physical exercise in persons presenting with diabetes mellitus. Rev Cuba Endocrinol. 2010;2(1):1-20. doi:10.1177/026988110101500107
  151. https://doi.org/10.1177/026988110101500107
  152. Márquez J, Suárez R. El ejercicio en el tratamiento de la diabetes mellitus tipo 2. Rev Argent Endocrinol Metab. 2012;48(4):1-10. doi:10.1016/S0304-5412(12)70482-1
  153. https://doi.org/10.1016/S0304-5412(12)70482-1
  154. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013;1281(1):141-159. doi:10.1111/j.1749-6632.2012.06785.x
  155. https://doi.org/10.1111/j.1749-6632.2012.06785.x
  156. Van Proeyen K, Szlufcik K, Nielens H, et al. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol. 2010;588(21):4289-4302. doi:10.1113/jphysiol.2010.196493
  157. https://doi.org/10.1113/jphysiol.2010.196493
  158. Cahn A, Miccoli R, Dardano A, Del Prato S. New forms of insulin and insulin therapies for the treatment of type 2 diabetes. Lancet Diabetes Endocrinol. 2015;3(8):638-652. doi:10.1016/S2213-8587(15)00097-2
  159. https://doi.org/10.1016/S2213-8587(15)00097-2
  160. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586-1593. doi:10.1007/s00125-017-4336-x
  161. https://doi.org/10.1007/s00125-017-4336-x
  162. Hostalek U, Gwilt M, Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015;75(10):1071-1094. doi:10.1007/s40265-015-0416-8
  163. https://doi.org/10.1007/s40265-015-0416-8
  164. Pernicova I, Korbonits M. Metformin-Mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143-156. doi:10.1038/nrendo.2013.256
  165. https://doi.org/10.1038/nrendo.2013.256
  166. Griffin SJ, Angelyn Bethel M, Holman RR, et al. Metformin in non-diabetic hyperglycaemia: The glint feasibility RCT. Health Technol Assess (Rockv). 2018;22(18). doi:10.3310/hta22180
  167. https://doi.org/10.3310/hta22180
  168. Infante M, Leoni M, Caprio M, Fabbri A. Long-term metformin therapy and vitamin B12 deficiency: an association to bear in mind. World J Diabetes. 2021;12(7):916-931. doi:10.4239/wjd.v12.i7.916
  169. https://doi.org/10.4239/wjd.v12.i7.916
  170. Gilbert MP, Pratley RE. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front Endocrinol (Lausanne). 2020;11(April):1-13. doi:10.3389/fendo.2020.00178
  171. https://doi.org/10.3389/fendo.2020.00178
  172. Alfonso Figueredo E, Reyes Sanamé FA, Pérez Álvarez ML, Batista Acosta Y, Peña Garcell Y. Inhibidores de la dipeptidil peptidasa 4 y una nueva estrategia farmacológica en la diabetes mellitus tipo 2. Rev Cubana Med. 2016;55(3):239-256.
  173. Carmen DRA, Aylwin G. Nuevos Fármacos En Diabetes Mellitus New Drugs for Treatment of Diabetes Mellitus. Rev Clínica Las Condes. 2016;27(2):235-256.
  174. https://doi.org/10.1016/j.rmclc.2016.04.013
  175. Ministerio de Salud Chile. Guía Practica Clínica Tratamiento de la DIABETES MELLITUS TIPO 2. Rev Panam Salud Pública. 2017;5(1):15-36. http://www.cenetec.salud.gob.mx/descargas/gpc/CatalogoMaestro/718_GPC_Tratamiento_de_diabetes_mellitus_tipo_2_/718GER.pdf
  176. Kalra S, Bahendeka S, Sahay R, et al. Consensus recommendations on sulfonylurea and sulfonylurea combinations in the management of Type 2 diabetes mellitus - International Task Force. Indian J Endocrinol Metab. 2018;22(1):132-157. doi:10.4103/ijem.IJEM_556_17
  177. https://doi.org/10.4103/ijem.IJEM_556_17
  178. Colagiuri S, Matthews D, Leiter LA, Chan SP, Sesti G, Marre M. The place of gliclazide MR in the evolving type 2 diabetes landscape: A comparison with other sulfonylureas and newer oral antihyperglycemic agents. Diabetes Res Clin Pract. 2018;143:1-14. doi:10.1016/j.diabres.2018.05.028
  179. https://doi.org/10.1016/j.diabres.2018.05.028
  180. Nair S, Wilding JPH. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab. 2010;95(1):34-42. doi:10.1210/jc.2009-0473
  181. https://doi.org/10.1210/jc.2009-0473
  182. Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37(19):1526-1534. doi:10.1093/eurheartj/ehv728
  183. https://doi.org/10.1093/eurheartj/ehv728
  184. Baartscheer A, Schumacher CA, Wüst RCI, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60(3):568-573. doi:10.1007/s00125-016-4134-x
  185. https://doi.org/10.1007/s00125-016-4134-x
  186. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657. doi:10.1056/nejmoa1611925
  187. https://doi.org/10.1056/NEJMoa1611925
  188. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. doi:10.1056/NEJMoa1911303
  189. https://doi.org/10.1056/NEJMoa1911303
Sistema OJS 3.4.0.5 - Metabiblioteca |