ACTIVIDAD ANTIMICROBIANA IN VITRO DE LOS VINOS DEL DUERO SOBRE CEPAS CLÍNICAS DE HELICOBACTER PYLORI

Contenido principal del artículo

Autores

Lidia Po Catalao Dionisio http://orcid.org/0000-0002-0530-9395
Alejandro Manuel Labella Vera
María Palma Mateus http://orcid.org/0000-0002-9278-5540
Juan José Borrego García http://orcid.org/0000-0002-2174-0652

Resumen

Se evaluó las actividades antimicrobianas in vitro de siete vinos (5 tintos y 2 blancos) de la región del Duero (Peninsula Ibérica) frente a once cepas de Helicobacter pylori de origen clínico. Para determinar las propiedades antimicrobianas de algunos componentes del vino sobre las cepas de H. pylori se utilizaron las técnicas de difusión en disco en placas de agar Columbia suplementado con sangre de caballo (CAB). La potential interacción entre las sustancias antioxidantes presentes en los vinos y dos antimicrobianos (amoxicilina y metronidazol) se determinó usando la técnica de difusión en disco. Todas las cepas ensayadas mostraron crecimiento en CAB suplementado con el 9% de los vinos analizados, pero no se obtuvo crecimiento de ninguna de las cepas en medios suplementados con el 45% y el 67,5% de vino. Asimismo, todas las cepas ensayadas crecieron en medios con la concentración de proantocianidinas presentes en los diferentes tipos de vinos estudiados. Los valores de concentración mínima inhibitoria (CMI) de los componentes antioxidantes de los vinos ensayados (ácido benzoico, catequina, quercetina y resveratrol) indican que el resveratrol fue la sustancia más potente en la inhibición del crecimiento de H. pylori. También se estableció un efecto de potenciación entre amoxicilina y metronidazol y los antioxidantes ensayados. Las interacciones amoxicilina + resveratrol y metronidazol + catequina aumentaron la actividad antimicrobiana contra H. pylori. Los resultados obtenidos sugieren un papel potencial del resveratrol como agente quimiopreventivo de la infección por H. pylori.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1. Kusters JG, van Vliet AHM, Kuipers E. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006; 19:449-490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539101/pdf/0054-05.pdf

2. Du MQ, Isaccson PG. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol. 2002; 3:97-104. https://www.sciencedirect.com/science/article/pii/S1470204502006514?via%3Dihub

3. Sachs G, Weeks DL, Melchers K, Scott DR. The gastric biology of Helicobacter pylori. Annu Rev Physiol. 2003; 65:349-369. https://www.annualreviews.org/doi/pdf/10.1146/annurev.physiol.65.092101.142156

4. Dundon WG, de Bernard M, Montecucco C. Virulence factors of Helicobacter pylori. Int J Med Microbiol. 2001; 290:647-658. doi: 10.1016/s1438-4221(01)80002-3.

5. Laheij RJ, Rossum LG, Jansen JB, Straatman H, Verbeek AL. Evaluation of treatment regimens to cure Helicobacter pylori infection: a meta-analysis. Aliment Pharmacol Ther. 1999; 13:857-864. https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1365-2036.1999.00542.x

6. Malfertheiner P, Mégraud F, O'Morain C, Hungin APS, Jones R, Axon A, et al. Current concepts in the management of Helicobacter pylori infection-the Maastricht 2-2000 Consensus Report. Aliment Pharmacol Ther. 2002; 16:167-180. https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1365-2036.2002.01169.x

7. Debets-Ossenkopp YJ, Namavar F, MacLaren DM. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1995; 14:353-355. doi: 10.1007/BF02116532.

8. Gerrits MM, van Vliet AHM, Kuipers E, Kusters JG. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. The Lancet Infect Dis. 2006; 6:699-709. https://www.sciencedirect.com/science/article/pii/S1473309906706272?via%3Dihub

9. Macias-Garcia F, Llovo-Taboada J, Diaz-Lopez M, Baston-Rey I, Dominguez-Munoz JE. High primary antibiotic resistance of Helicobacter pylori strains isolated from dyspeptic patients: a prevalence cross-sectional study in Spain. Helicobacter. 2017;22: e12440. https://onlinelibrary.wiley.com/doi/epdf/10.1111/hel.12440

10. Alba C, Blanco A, Alarcon T. Antibiotic resistance in Helicobacter pylori. Curr Opin Infect Dis. 2017;30: 489-497. https://journals.lww.com/co-infectiousdiseases/Fulltext/2017/10000/Antibiotic_resistance_in_Helicobacter_pylori.8.aspx

11. Walduck AK, Raghavan S. Immunity and vaccine development against Helicobacter pylori. In: Kamiya S, Backert S, eds. Helicobacter pylori in Human Diseases. Advances in Experimental Medicine and Biology, vol 1149, Cham.: Springer; 2019. p. 257-275. https://link.springer.com/chapter/10.1007%2F5584_2019_370

12. Collado MC, Gonzalez A, Gonzalez R, Hernandez M, Ferrus MA, Sanz Y. Antimicrobial peptides are among the antagonistic metabolites produced by bifidobacterium against Helicobacter pylori. Int J Antimicrob Agents. 2005; 25:385-391. https://www.sciencedirect.com/science/article/pii/S0924857905000312?via%3Dihub

13. Stojilijkovic I, Evavold BD. (2001) Antimicrobial properties of porphyrins. Expert Opin Investig Drugs. 2001; 10:309-320. https://www.tandfonline.com/doi/abs/10.1517/13543784.10.2.309

14. Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T, Mitsufuji S, et al. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter. 2003; 8:207-215. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1523-5378.2003.00146.x?sid=nlm%3Apubmed

15. Tombola F, Campello S, De Luca L, Ruggiero P, Del Giudice G, Papini E, et al. Plant polyphenols inhibit VacA, a toxin secreted by the gastric pathogen Helicobacter pylori. FEBS Lett. 2003; 543:184-189. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/S0014-5793%2803%2900443-5?sid=nlm%3Apubmed

16. Eurogast Study Group. Epidemiology of, and risk factors for, Helicobacter pylori infection among 3194 asymptomatic subjects in 17 populations. Gut. 1993; 34:1672- 1676. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1374460/

17. Brenner H, Rothenbacher D, Bode G, Adler G. Relation of smoking and alcohol and coffee consumption to active Helicobacter pylori infection: Cross sectional study. Br Med J. 1997; 315:1489-1492. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2127930/

18. Bujanda L. The effects of alcohol consumption upon the gastrointestinal tract. Am J Gastroenterol. 2000; 95:3374-3382. https://insights.ovid.com/pubmed?pmid=11151864

19. Brenner H, Bode G, Adler G, Hoffmeister A, Koenig W, Rothenbacher D. Alcohol as a gastric disinfectant? The complex relationship between alcohol consumption and current Helicobacter pylori infection. Epidemiology. 2001; 12:209-214. https://journals.lww.com/epidem/Fulltext/2001/03000/Alcohol_as_a_Gastric_Disinfectant__The_Complex.13.aspx

20. Murray LJ, Lane AJ, Harvey IM, Donovan JL, Nair P, Harvey RF. Inverse relationship between alcohol consumption and active Helicobacter pylori infection: The Bristol Helicobacter Project. Am J Gastroenterol. 2002; 97:2750-2755. https://insights.ovid.com/pubmed?pmid=12425543

21. Marimon JM, Bujanda L, Gutierrez-Stampa MA, Cosme A, Arenas JI. In vitro bactericidal effect of wine against Helicobacter pylori. Am J Gastroenterol. 1998; 93:1392. https://insights.ovid.com/pubmed?pmid=9707086

22. Glupczynski Y. Culture of Helicobacter pylori from biopsies and antimicrobial susceptibility testing. In: Megraud F, Lee A, eds. Helicobacter pylori: Techniques for Clinical Diagnosis and Basic Research, Oxford: WB Saunders Company, p. 17-32. 1996.

23. Megraud F, Lee A. Helicobacter pylori: Techniques for Clinical Diagnostics and Basic Research. Oxford: WB Saunders Company; 1996.

24. CLSI/NCCLS. Performance Standards for Antimicrobial Susceptibility Testing. Approved Standard M100-S19. Wayne: CLSI; 2009.

25. National Committee for Clinical Laboratory Standards (NCCLS). Development of in vitro Susceptibility Testing Criteria and Quality Control Parameters, 5th Ed. Philadelphia: American Society for Testing of Materials; 2018.

26. Oleastro M, Gerhard M, Lopes AI, Ramalho P, Cabral J, Guerreiro AS, et al. Helicobacter pylori virulence genotypes in Portuguese children and adults with gastroduodenal pathology. Eur J Clin Microbiol Infect Dis. 2003; 22:85-91. https://link.springer.com/article/10.1007/s10096-002-0865-3

27. Tummuru MKR, Cover TL, Blaser MJ. Cloning and expression of a high-molecular- mass major antigen of Helicobacter pylori: Evidence of linkage to cytotoxin production. Infect Immun. 1993; 61:1799-1809. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC280768/

28. Atherton JC, Cao P, Peek RM. Mosaicism in the vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995; 270:17771-17779. https://www.sciencedirect.com/science/article/pii/S0021925817480100?via%3Dihub

29. Roggero JP, Coen S, Archier P, Rocheville-Divorne C. Etude par C.L.H.P. de la reaction glucoside de malvidine-acetaldehyde-compose phenolique. Conn Vigne Vin. 1987; 21:163-168. https://oeno-one.eu/article/view/1283

30. Megraud F, Lehours P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev. 2007; 20:280-322. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1865594/

31. Ecclissato C, Marchioretto MAM, Mendonça S, Godoy APO, Guersoni RA, Deguer M, et al. Increased primary resistance to recommended antibiotics negatively affects Helicobacter pylori eradication. Helicobacter. 2002; 7:53-59. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1523-5378.2002.00056.x?sid=nlm%3Apubmed

32. Lee SY, Shin YW, Hahm KB. Phytoceuticals: mighty but ignored weapons against Helicobacter pylori infection. J Dig Dis. 2008; 9:129-139. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1751-2980.2008.00334.x

33. Daroch F, Hoeneisen M, Gonzalez CL, Kawaguchi F, Salgado F, Solar H, et al. In vitro antibacterial activity of Chilean red wines against Helicobacter pylori. Microbios. 2001; 104:79-85. https://pubmed.ncbi.nlm.nih.gov/11297014/

34. Just JR, Daeschel MA. Antimicrobial effects of wine on Escherichia coli O157:H7 and Salmonella typhimurium in a model stomach system. J Food Sci. 2003; 68:285- 290. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2621.2003.tb14154.x

35. Møretrø T, Daeschel MA. Wine is bactericidal to foodborne pathogens. J Food Sci. 2004; 69:M251-257. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2621.2004.tb09938.x

36. Friedman M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem. 2014; 62:6025- 6042. https://pubs.acs.org/doi/10.1021/jf501266s

37. Kamei H, Hashimoto Y, Koide T, Kojima T, Hasegawa S. Anti-tumor of methanol extracts from red and white wines. Cancer Biother Radiopharm. 1998; 13:447-452. https://www.liebertpub.com/doi/10.1089/cbr.1998.13.447?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&

38. Belleville J. The French paradox: possible involvement of ethanol in the protective effect against cardiovascular diseases. Nutrition. 2002; 18:173-177.

39. Daglia, M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012; 23:174- 181. https://www.sciencedirect.com/science/article/pii/S0899900701007213?via%3Dihub

40. Mahady GB, Pendland SL. Resveratrol inhibits the growth of Helicobacter pylori in vitro. Am J Gastroenterol. 2000; 95:1849. https://insights.ovid.com/pubmed?pmid=10926010

41. Wang D, Xu Y, Liu W. Tissue distribution and excretion of resveratrol in rat alter oral administration of Polygonum cuspidatum extract (PCE). Phytomedicine. 2008; 15:859-866. https://www.sciencedirect.com/science/article/pii/S0944711308000287?via%3Dihub

42. Orallo F. Trans-resveratrol: a magical elixir of eternal youth?. Curr Med Chem. 2008; 15:1887-1898. https://pubmed.ncbi.nlm.nih.gov/18691046/

43. Mahady GB, Pendland SL, Chadwick LR. Resveratrol and red wine extracts inhibit the growth of CagA + strains of Helicobacter pylori in vitro. Am J Gastroenterol. 2003; 98:1440-1441. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860858/

44. Dong W, Zhon Y, Yang Z. Research progress of mechanism of action of resveratrol. Pharmacol Pharm. 2016; 7:170-175. DOI: 10.4236/pp.2016.74022

45. Ghiara P, Marchetti M, Blaser MJ, Tummuru MK, Cover TL, Segal ED, et al. Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease. Infect Immun. 1995; 63:4154-4160. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC173584/

46. Salama NR, Otto G, Tompkins L, Falkow S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect Immun. 2001; 69:730-736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC97945/

47. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious disease. Phytomedicine. 2008; 15:639-652. https://www.sciencedirect.com/science/article/pii/S0944711308001104?via%3Dihub

48. Sung WG, Lee DG. Mechanism of decreased susceptibility for Gram-negative bacteria and synergistic effect with ampicillin of indole-3-carbinol. Biol Pharm Bull. 2008; 31:1798-1801. https://pubmed.ncbi.nlm.nih.gov/18758080/

Descargas

La descarga de datos todavía no está disponible.