Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Innovaciones en la terapia antimicrobiana

Innovations in antimicrobial therapy



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Guevara Agudelo, F. A., Muñoz Molina, L. C., Navarrette Ospina, J., Salazar Pulido, L. M., & Bermúdez, G. P. (2020). Innovaciones en la terapia antimicrobiana. NOVA, 18(34), 9-25. https://doi.org/10.22490/24629448.3921

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Fredy Alexander Guevara Agudelo
    Liliana Constanza Muñoz Molina
      Jeannette Navarrette Ospina
        Luz Mary Salazar Pulido

          Gladys Pinilla Bermúdez


            La resistencia microbiana ha llevado a la búsqueda de innovadoras alternativas para su contención y dentro de las más promisorias están el uso de péptidos sintéticos, no sólo por sus características intrínsecas antimicrobianas, sino por  las interacciones sinérgicas y antagónicas que presenta con otros mediadores inmunológicos. Estas propiedades han permitido crear péptidos sintéticos reguladores de defensa innata que representan un nuevo enfoque inmunomodulador para el tratamiento de infecciones; sin embargo, sólo los diseñados con alto score antimicrobiano, han demostrado eficacia en estudios clínicos de Fase 3. Debido a su amplio espectro de actividad, un único péptido puede actuar contra bacterias Gram negativas, Gram positivas, hongos, e incluso virus y parásitos, aumentando el interés por investigar estas dinámicas moléculas. 

            Por otra parte, se encuentra el sistema CRISPR, para la edición de genomas bacterianos, permitirá reducir su actividad virulenta y diseñar antimicrobianos basados en nucleasas CRISPR-Cas 9 programables contra dianas específicas, las que representan un promisorio camino en el estudio de nuevas alternativas con alto potencial para eliminar la resistencia a antibióticos de bacterias altamente patógenas. Asimismo, se aborda la terapia con fagos, referida a la accion de virus que infectan bacterias, usados solos o en cocteles para aumentar el espectro de acción de estos, aprovechando su abundacia en la naturaleza, ya que se ha considerado que cada bacteria tiene un virus específico que podría emplearse como potente agente antibacteriano.

            Finalmente,  mientras se usen como principal medio de contención solo tratamientos convencionales antimicrobianos, incluso de manera oportuna y acertada, la microevolución en las bacterias se asegurará de seguir su curso


            Visitas del artículo 364 | Visitas PDF 201


            Descargas

            Los datos de descarga todavía no están disponibles.

            1. Fair R J, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspec Medicin Chem. 2014; 28(6):25-64. doi:10.4137/PMC.S14459. eCollection 2014. Review.

            2. Laxminarayan R, Duse A, Wattal C, Zaidi A K M, Wertheim H F L, Sumpradit N, Cars, O. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12): 1057–98. http://doi.org/10.1016/S1473-3099(13)70318-9

            3. Brian D, Carole F, Johnson A. The Control of Methicillin-Resistant Staphylococcus aureus. Blood Stream Infec Eng. 2015; Ofid: 1–8. http://doi.org/10.1093/o

            4. Boucher H W, Talbot G H, Bradley J S, Edwards J E, Gilbert D, Rice L B, Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12. http://doi.org/10.1086/595011

            5. WHO. Antimicrobial resistance: global report on surveillance 2014. Bull World Health Organ. 2014;61(3): 383–94. http://doi.org/10.1007/s13312-014-0374-3

            6. D’Costa V M, King C E, Kalan L, Morar M, Sung W W L, Schwarz C, et.al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–461. http://doi.org/10.1038/nature10388

            7. Davies J, Davies D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev. 2010;74(3): 417–433. http://doi.org/10.1128/mmbr.00016-10

            8. Wright G D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5:175–186. http://doi.org/10.1038/nrmicro1614

            9. Martínez J L. Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science. 2008;321(5887):365 LP-367. Retrieved from http://science.sciencemag.org/content/321/5887/365.abstract

            10. Chadha T. Antibiotic Resistant Genes in Natural Environment. Agrotechnol. 2012;1(1):1–3. http://doi.org/10.4172/2168-9881.1000104

            11. Berglund B, Gengler S, Batoko H, Wattiau P, Errampalli D, Leung K, Schweizer H P. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. J Microbiol Meth. 2015;113: 28564. http://doi.org/10.1016/j.mimet.2015.03.023

            12. Seiler C, Berendonk T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:1–10. http://doi.org/10.3389/fmicb.2012.00399

            13. Jury K L, Vancov T, Stuetz RM, Khan S J. Antibiotic resistance dissemination and sewage treatment plants. Applied Microbiol. 2010;3: 509–519.

            14. Marti R, Scott A, Tien Y C, Murray R, Sabourin L, Zhang Y, Topp E. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied Environ Microbiol. 2013;79(18):5701–5709. http://doi.org/10.1128/AEM.01682-13

            15. Van Boeckel T P, Gandra S, Ashok A, Caudron Q, Grenfel, B T, Levin S A, Laxminarayan R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014; 14(8): 742–750. http://doi.org/10.1016/S1473-3099(14)70780-7

            16. Yuen C M, Jenkins H E, Rodriguez C A, Keshavjee S, Becerra MC. Global and Regional Burden of Isoniazid-Resistant Tuberculosis. Pediatr. 2015;136(1): e50-9. http://doi.org/10.1542/peds.2015-0172

            17. Zielnik-Jurkiewicz B, Bielicka A. Antibiotic resistance of Streptococcus pneumoniae in children with acute otitis media treatment failure.Inter J Pediatr Otorhinolaryngo. 2017:79(12): 2129–2133. http://doi.org/10.1016/j.ijporl.2015.09.030

            18. Temime L, Boëlle P Y, Valleron A J, Guillemot D. Penicillin-resistant pneumococcal meningitis: high antibiotic exposure impedes new vaccine protection. Epidemiol Infect. 2005;133(3): 493–501. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870273/

            19. Tängdén T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Upsala J Med Sci. 2014;119(2):149–153. http://doi.org/10.3109/03009734.2014.899279

            20. Ventola C L. The antibiotic resistance crisis: part 1: causes and threats. A Peer-Rev J Form Manag. 2015; 40(4): 277–83. http://doi.org/Article

            21. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870), 389–395. http://dx.doi.org/10.1038/415389a

            22. Yin LM, Edwards MA, Li J, Yip C M, Deber CM. Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions. J Biol Chem. 2012;287(10): 7738–7745. http://doi.org/10.1074/jbc.M111.303602

            23. Bandyopadhyay S, Lee M, Sivaraman J, & Chatterjee C. (). Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom. Biochem Biophy Res Comm. 2013;430(1): 1–6. http://doi.org/10.1016/j.bbrc.2012.11.015

            24. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 2014;21(12): 1639–1647. http://doi.org/10.1016/j.chembiol.2014.10.009

            25. Berglund N A, Piggot T J, Jefferies D, Sessions R B, Bond P J, Khalid S. Interaction of the Antimicrobial Peptide Polymyxin B1 with Both Membranes of E. coli: a Molecular Dynamics Study. PLoS Comp Biol.2015;11(4): 1–17. http://doi.org/10.1371/journal.pcbi.1004180

            26. Bhopale GM. Antimicrobial Peptides: A Promising Avenue For Human Healthcare. Curr Pharm Biotechnol. 2019 Oct 11.
            doi: 10.2174/1389201020666191011121722.

            27. Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J. 2009;276(22): 6483–6496. http://doi.org/10.1111/j.1742-4658.2009.07359.x

            28. Hancock R E W, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech. 2006; 24(12): 1551–1557. http://doi.org/10.1038/nbt1267

            29. Pushpanathan M1, Gunasekaran P, Rajendhran Antimicrobial peptides: versatile biological properties. J Int J Pept. 2013;2013:675391. doi: 10.1155/2013/675391. Epub 2013 Jun 26.

            30. Fjell CD, Hiss J A, Hancock R E W, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Dis. 2012;11(1): 37–51. http://doi.org/10.1038/nrd3591

            31. Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. Inter J Mol Sci. 2016; 11;17(5). pii: E701http://doi.org/10.3390/ijms17050701

            32. Sun J, Xia Y, Li D, Du Q, Liang D. Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides. BBA – Biomembranes. 2014;1838(12): 2985–2993. http://doi.org/10.1016/j.bbamem.2014.08.018

            33. Reißer S, Strandberg E, Steinbrecher T, Ulrich A S. 3D Hydrophobic Moment Vectors as a Tool to Characterize the Surface Polarity of Amphiphilic Peptides. BPJ. 2014;106(11): 2385–2394. http://doi.org/10.1016/j.bpj.2014.04.020

            34. Tanaka M, Takamura Y, Kawakami T, Aimoto S, Saito H. Effect of amino acid distribution of amphipathic helical peptide derived from human apolipoprotein A-I on membrane curvature sensing. FEBS Letters. 2013;587(5):510–515. http://doi.org/10.1016/j.febslet.2013.01.026

            35. Malanovic N, Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmac. 2016; 20;9(3). pii: E59. doi: 10.3390/ph9030059.

            36. Wink M, Herbel V. Mode of action and membrane specificity of the antimicrobial peptide snakin-2. PeerJ. 2016;4: e1987. http://doi.org/10.7717/peerj.1987

            37. Phoenix D, Dennison S R, Harris F. Antimicrobial Peptides : Their History , Evolution , and Functional Promiscuity. Antimicrob Pep. 2013;8:1–37.
            http://doi.org/10.1002/9783527652853.ch1

            38. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development - can a new approach be developed? Nat Rev. Drug Disc. 2013;12(10): 791–808. http://doi.org/10.1038/nrd4000

            39. de La Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein E B M, Horsman S, Hancock R E W. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agen Chem. 2012;56(5): 2696–2704. http://doi.org/10.1128/AAC.00064-12

            40. Lum K Y, Tay S T, Le C F, Lee V S, Sabri N H, Velayuthan R D, Sekaran S D. Activity of Novel Synthetic Peptides against Candida albicans. Sci Rep. 2015;5: 9657. http://doi.org/10.1038/srep09657

            41. Tripathi S, Wang G, White M, Qi L, Taubenberger J, Hartshorn K L. Antiviral activity of the human cathelicidin, LL-37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS ONE. 2015;10(4): 1–17. http://doi.org/10.1371/journal.pone.0124706

            42. D’Alessandro S, Tullio V, Giribaldi G. Beyond Lysozyme: Antimicrobial Peptides Against Malaria. Cham: Springer International Publishing.2015; 10: 91–101. http://doi.org/10.1007/978-3-319-09432-8_7

            43. Piktel E, Niemirowicz K, Wnorowska U, Wątek M, Wollny T, Głuszek K, Bucki R. The Role of Cathelicidin LL-37 in Cancer Development. Arch Immunol Therap Exp. 2015;5:33–46. http://doi.org/10.1007/s00005-015-0359-5

            44. Melo M N, Ferre R, Castanho M A. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Micro, 200;97(3): 245–250. Retrieved from http://dx.doi.org/10.1038/nrmicro2095

            45. Hancock R E W, Falla T J. Antimicrobial peptides: broad-spectrum antibiotics from nature. Clin Microbiol Infect. 1996;1(4): 226–229. http://doi.org/http://doi.org/10.1016/S1198-743X(15)60279-8

            46. Wimley W C. Describing the Mechanism of Antimicrobial Peptide Action with the Interfacial Activity Model. ACS Chem Biol. 2011;5(10): 905–917. http://doi.org/10.1021/cb1001558.Describing

            47. Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q, Shan A. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PloS One, 2014;9(1): e86364. http://doi.org/10.1371/journal.pone.0086364

            48. Datta A, Ghosh A, Airoldi C, Sperandeo P, Mroue K H, Jiménez-Barbero J, Bhunia A. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Sci Rep. 2015;5(July 2015): 11951.

            49. Malanovic N, Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals (Vol. 9). 2016 http://doi.org/10.3390/ph9030059

            50. Jang S A, Kim H, Lee J Y, Shin J R, Kim D J, Cho J H, Kim S C. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides. 2012;34(2): 283–289.

            51. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(November 2015): D1087–D1093. http://doi.org/10.1093/nar/gkv1278

            52. Brahmachary M, Krishnan S P T, Koh J L Y, Khan A M, Seah S H, Tan T W, Bajic V B. ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res. 2004;32(Database issue): D586–D589. http://doi.org/10.1093/nar/gkh032

            53. Gueguen Y, Garnier J, Robert L, Lefranc M.-P, Mougenot I, de Lorgeril J, Bachère E. PenBase, the shrimp antimicrobial peptide penaeidin database: Sequence-based classification and recommended nomenclature. Develop Comp Immunol. 2006;30(3): 283–288. http://doi.org/http://doi.org/10.1016/j.dci.2005.04.003

            54. Seebah S, Suresh A, Zhuo S, Choong Y H, Chua H, Chuon D, Verma C. Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res. 2007;35(Database issue): D265–D268. http://doi.org/10.1093/nar/gkl866

            55. Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res.2009;37(Database issue): D963–D968. http://doi.org/10.1093/nar/gkn655

            56. Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc M P, Pirtskhalava M. DBAASP: Database of antimicrobial activity and structure of peptides. FEMS Microbiol Let. 2014; 357(1): 63–68. http://doi.org/10.1111/1574-6968.12489

            57. Novkovi M, Simuni J, Bojovi V, Tossi A, Jureti D. DADP: The database of anuran defense peptides. Bioinformatics. 2012;28(10):1406–1407. http://doi.org/10.1093/bioinformatics/bts141

            58. Piotto S P, Sessa L, Concilio S, Iannelli P. YADAMP: Yet another database of antimicrobial peptides. Intern J Antimicrobial Agen. 2012;39(4): 346–351. http://doi.org/10.1016/j.ijantimicag.2011.12.003

            59. Thomas S, Karnik S, Barai R S, Jayaraman V K, Idicula-Thomas S. CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Res.2009; 38(SUPPL.1): 774–780. http://doi.org/10.1093/nar/gkp1021

            60. Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE. 2013;8(6): 6–11. http://doi.org/10.1371/journal.pone.0066557

            61. Ahmad A, Azmi S, Srivastava S, Kumar A, Tripathi J K, Mishra N N,Ghosh J K. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms. Amino Acids. 2014;46(11): 2531–2543. http://doi.org/10.1007/s00726-014-1802-3

            62. Deleu M, Crowet J-M, Nasir M N, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Bioch Biophys Acta (BBA). 2014;1838(12): 3171–3190. http://doi.org/http://doi.org/10.1016/j.bbamem.2014.08.023

            63. Kleandrova V V, Ruso J M, Speck-Planche A, Dias Soeiro Cordeiro MN. Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity. ACS Combinatorial Sci. 2016;18(8): 490–498. http://doi.org/10.1021/acscombsci.6b00063

            64. Choi K C, Kim H R, Park Y S, Park S M, Kim J H. Design and screening of in vivo expressed antimicrobial peptide library. Biotechn Let. 2002; 24(4): 251–256. http://doi.org/10.1023/A:1014076426705

            65. Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, Czermak P. A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fac. 2017; 16(1): 29. http://doi.org/10.1186/s12934-017-0637-5

            66. Hilpert K, Volkmer-Engert, R, Walter T, Hancock R E W. High-throughput generation of small antibacterial peptides with improved activity. Nat Biotech. 2005; 23(8): 1008–1012. Retrieved from http://dx.doi.org/10.1038/nbt1113

            67. López-Pérez PM, Grimsey E, Bourne L, Mikut R, Hilpert K. Screening and Optimizing Antimicrobial Peptides by Using SPOT-Synthesis.Front Chem. 2017 Apr 12;5:25. doi: 10.3389/fchem.2017.00025. eCollection 2017

            68. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(November 2015): D1087–D1093. http://doi.org/10.1093/nar/gkv1278

            69. Mansour S C, Pena O M, Hancock REW. Host defense peptides: Front-line immunomodulators. Trends Immunol. 2014; 35(9): 443–450. http://doi.org/10.1016/j.it.2014.07.004

            70. Hwang-soo Joo Ch F, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016. 26; 371(1695): 20150292 doi: [10.1098/RSTB.2015.0292]

            71. Sulakvelidze A. (2001). Bacteriophage Therapy. Antimicrob Agen Chemother. 2001; 45(31): 14–18. http://doi.org/10.1128/AAC.45.3.649

            72. Clokie M R, Millard A D, Letarov A V, Heaphy S. Phages in nature. Bacteriophage. 2011; 1(1): 31–45. http://doi.org/10.4161/bact.1.1.14942

            73. Keen E C. Phage therapy: Concept to cure. Front Microbiol. 2012;3(JUL): 1–3. http://doi.org/10.3389/fmicb.2012.00238

            74. Wittebole X, De Roock S, Opal S M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2013;5(1): 226–235. http://doi.org/10.4161/viru.25991

            75. Skurnik M, Pajunen M, Kiljunen S. Biotechnological challenges of phage therapy. Biotech Lett. 2007;29(7): 995–1003. http://doi.org/10.1007/s10529-007-9346-1

            76. Jassim, S A A, Limoges R G. Natural solution to antibiotic resistance: Bacteriophages “The Living Drugs.” World J Microbiol Biotech. 2014;30(8): 2153–2170. http://doi.org/10.1007/s11274-014-1655-7

            77. Falagas M E, Mavroudis A D, Vardakas K Z. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?. Expert Rev Anti-infective Ther. 2016;14(8): 747–763. doi: 10.1080/14787210.2016.1204911

            78. Giono L. Crispr/Cas9 y la Terapia Génica. Medicina. B. Aires. 2017;77(5):405-409.

            79. Harrison M. A Crispr View of Development. Gen Develop. 2014; 28(17): 1859–1872.

            80. Ostos Ortíz, O., Rosas Arango, S., & González Devia, J. (2019). Aplicaciones biotecnológicas de los microorganismos. NOVA, 17(31), 129-163. Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/950

            81. Patrick H, Lander E, Zhang F. Development And Applications of Crispr-Cas9 For Genome Engineering. Cell. 2014;157(6): 1262–1278.

            82. Gutierrez, D., & Sánchez Mora, R. (2018). Tratamientos alternativos de medicina tradicional para Chlamydia trachomatis, agente causal de una infección asintomática. NOVA, 16(30), 65-74. Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/869

            83. Jassim S A A, Limoges R G. Natural solution to antibiotic resistance: Bacteriophages “The Living Drugs”’. World J Microbiol Biotech. 2014;30(8):2153–2170. doi: 10.1007/s11274-014-1655-7

            Sistema OJS 3.4.0.5 - Metabiblioteca |