Cultivos celulares como alternativa para el aislamiento y la producción de biológicos contra el Virus de Influenza

Contenido principal del artículo

Autores

Luisa Fernanda Mancipe Gloria Ramírez Jairo Jaime C Victor Vera A

Resumen

El virus de influenza ha sido reconocido como un importante patógeno en poblaciones humanas y animales, ya que es el principal causante de enfermedades respiratorias. Muchas vacunas y aislamientos de virus de influenza humana y animal son realizadas actualmente en huevos embrionados, siendo este el método usado tradicionalmente por décadas. Sin embargo, se han encontrado inconvenientes en la elaboración de vacunas ya


que el proceso de fabricación es de capacidad limitada (se requiere aproximadamente un huevo para generar una dosis vacunal) y alta demanda tiempo, disminuyendo su habilidad para generar biológicos rápidamente en el caso de una pandemia. El empleo de líneas celulares continuas para la producción de vacunas virales nace como alternativa que ofrece diversas ventajas: (i) oportunidad de emplear células completamente caracterizadas y estandarizadas, (ii) producción y planeación permanente de vacunas y (iii) los biológicos pueden ser producidos de forma más rápida.


 


El objetivo de esta revisión es analizar las diferentes alternativas empleadas en el cultivo y/o aislamiento de virus de influenza, enfatizando en el uso de cultivos celulares como sustrato para el aislamiento y la producción de biológicos destinados a la salud humana y animal.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos. 

Carta de originalidad y cesión de derechos de publicación

Se debe presentar para proceso editorial con fines de publicación del artículo una carta de originalidad y cesión de derechos de publicación (Descargar Aquí)

 

Referencias

1. Acosta O, Guerrero CA, Cortes JA. ASPECTOS BASICOS, CLINICOS Y EPIDEMIOLOGICOS DE LA INFLUENZA. Rev.Fac.Med 2009 Vol. 57 No. 2

2. Flint, S.J. Principles of Virology: molecular biology, pathogenesis and control of animal viruses. 2nd ed. Washington, USA. 2004. p. 918.

3. Gramer M. An update on swine influenza ecology and diagnostics. American Association of Swine Veterinarians, 2008.

4. Reemers S, Koerkamp M, Holstege F, Eden W, Vervelde L. Cellular host transcriptional responses to influenza A virus in chicken tracheal organ cultures differ from responses in in vivo infected trachea. Veterinary Immunology and Immunopathology 132 (2009) 91–100

5. Reeth VK, Vleeschauwer A, Kyriakis C, Pensaert M. Influenza in Birds, Pigs and Humans: Old Theories versus Current Viewpoints. Proceedings of the 19th IPVS congress, Copenhagen, Denmark, 2006. Volume 1.

6. Voeten JTM, Brands R, Palache AM, van Scharrenburg GJM, Rimmelzwaan GF, Osterhaus ADME, et al. Characterization of high-growth reassortant influenza A viruses generated in MDCK cells cultured in serum-free medium. Vaccine 1999;17:1942–50
7. Couch RB. Seasonal inactivated influenza virus vaccines. Vaccine 26s (2008) D5 – D9

8. Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine 19 (2001) 3444–3450

9. Robertson JS, Bootman JS, Newman R, et al. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology 1987; 160:31–7.

10. Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein. Proc. Natl. Acad. Sci. 101 (52), 2004; 18153–18158.

11. Rogers GN & D’Souza BL. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 1989; 317–322.

12. Rogers GN & Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 1983; 361–373.

13. Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virology 72. 1998; 7367–7373.

14. Lee CW, Jung K, Jadhao SJ, Suarez DL. Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses. J. Virol. Methods 153, 2008; 22–28.

15. Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258, 1999; 1–20.

16. Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, et al. Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res. 2005; 114 (1–2), 15–22.

17. Romanova J, Katinger D, Ferko B, Voglauer R, Mochalova L, Bovin N, et al. Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern. Virology 307 (2003) 90–97

18. Gambaryan AS, Marinina VP, Tuzikov AB, Bovin NV, Rudneva IA, Sinitsyn BV, et al. Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247. 1998; 170–177

19. Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, et al. Differences in sialic acid–galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virology 71, 1997; 3357–3362.

20. Le Ru A, Jacob D, Transfiguracion J, Ansorge S, Henry O, Kamen AA. Scalable production of influenza virus in HEK-293 cells for efficient vaccine Manufacturing. Vaccine 28 (2010) 3661–3671

21. Uchide N, Suzuki A, Ohyama K, Bessho T, Toyoda H. Secretion of Bioactive Interleukin-6 and Tumor Necrosis Factor-α Proteins from Primary Cultured Human Fetal Membrane Chorion Cells Infected with Influenza Virus . Placenta, Volume 27, Issues 6-7, June-July 2006, Pages 678-690

22. Takahashi M, Yamada T, Nakanishis K, Fujitas K, Nakajima’i K, Nobusawa E, et al. Influenza A Virus Infection of Primary Cultured Cells From Rat Fetal Brain. Parkingsonism & Related Disorders. Vol. 3, No. 2, pp 97 – 102, 1997

23. Bradshaw GL, Schwartz CD, Schlesinger RW. Replication of H1N1 influenza viruses in cultured mouse embryo brain cells: Virus strain and cell differentiation affect synthesis of proteins encoded in RNA segments 7 and 8 and efficiency of mRNA splicing Virology, Volume 176, Issue 2, June 1990, Pages 390-402

24. Tannock GA, Bryce DA, Paul JA. Evaluation of chicken kidney and chicken embryo kidney cultures for the large-scale growth of attenuated influenza virus master strain A/Ann/Arbor/6/60-ca. Vaccine, Volume 3, Issue 4, September 1985, Pages 333-339

25. Busch MG, Bateman AC, Landolt GA, Karasin AI, Brockman-Schneider RA, Gern JE, et al. Identification of amino acids in the HA of H3 influenza viruses that determine infectivity levels in primary swine respiratory epithelial cells . Virus Research, Volume 133, Issue 2, May 2008, Pages 269-279

26. Initiative for Vaccine Research World Health Organization. Use of Cell Lines for the Production of Influenza Virus Vaccines: An Appraisal of Technical, manufacturing, and Regulatory Considerations Geneva, Switzerland, 10 April 2007

27. Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 2001; 19:2716–21.

28. Youil R, Su Q, Toner TJ, Szymkowiak C, Kwan WS, Rubin B, et al. Comparative study of influenza virus replication in Vero and MDCK cell lines. J Virol Methods 2004; 120:23–31.

29. Chiapponi C, Zanni I, Garbarino C, Barigazzi G, Foni E. Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses. Journal of Virological Methods 163 (2010) 162–165

30. Govorkova EA, Murk G, Meignier B, De Taisne C. and Webster RG. African Green Monkey Kidney (Vero) cells provide an alternative host cell system for Influenza A and B virus. J. Viral. 1996, 70, 5519-5524.

31. Takemae N, Ruttanapumma R, Parchariyanon S, Yoneyama S, Hayashi T, Hiramatsu H, et al. Animal cell culture in pharmaceutical biotechnology: research and perspectives. Revista Mexicana de Ciencias Farmaceuticas. Volumen 40, Numero 4 , Octubre - Diciembre 2009

32. I.W.S. Li, K.H. Chan, K.W.K. To, S.S.Y. Wong, P.L. Ho, S.K.P. Lau, et al. Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. Journal of Clinical Virology 46 (2009) 325–330

33. Clavijo A, Tresnan DB, Jolie R, Zhou EM. Comparison of embryonated chicken eggs with MDCK cell culture for the isolation of swine influenza virus. The Canadian Journal of Veterinary Research. 2002; 66:117.121

34. Liu J, Mani S, Schwartz R, Richman L, Tabor DE. Cloning and assessment of tumorigenicity and oncogenicity of a Madin–Darby canine kidney (MDCK) cell line for influenza vaccine production. Vaccine 28 (2010) 1285–1293

35. Medema JK, Meijer J, Kersten AJ, Horton R. Safety assessment of Madin Darby canine kidney cells as vaccine substrate. Dev Biol (Basel) 2006; 123:243–50[discussion 65–6].

36. Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, and Darner F. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 1998 Volume 16 Number 9/l 0

37. Ozaki H, Govorkova EA, Li C, Xiong X, Webster RG, and Webby RJ. Generation of High-Yielding Influenza A Viruses in African Green Monkey Kidney (Vero) Cells by Reverse Genetics. Journal of Virology, Feb. 2004, p. 1851–1857

38. Oxford JS, Corcoran T, Knott R, et al. Serological studies with influenza A(H1N1) viruses cultivated in eggs or in a canine kidney cell line (MDCK). Bull World Health Organ 1987; 65:181–7.

39. Bruhl P, Kerschbaum A, Kistner O, Barrett N, Dorner F, Gerencer M. Humoral and cell-mediated immunity to Vero cell-derived influenza vaccine. Vaccine 19 (2001) 1149–1158

40. Zhirnov OP and Klenk HD. Human influenza A viruses are proteolytically acti- vated and do not induce apoptosis in Caco-2 cells. Virology 313, 2003; 198–212.

41. Arbelaez G, Calderon D, Rincon M, Lora A, Mercado M. Implementacion de dos metodologias diagnosticas para la determinacion del virus de influenza porcina. Universitas Scientiarum, Revista de la Facultad de Ciencias Vol. 13 N° 1, 65-74. Enero-Junio 2008

42. Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, et al. The role of interferon in influenza virus tissue tropism. J Virol 1998; 72:8550–8.

43. Chu C, Lugovtsev V, Lewis A, Betenbaugh M, Shiloach J. Production and antigenic properties of influenza virus from suspension MDCK-siat7e cells in a bench-scale bioreactor. Vaccine 28 (2010) 7193–7201.

44. Wielink R. van, Kant-Eenbergen HCM, Harmsen MM, Martens DE, Wijffels RH, Coco-Martin JM. Adaptation of a Madin–Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines. Journal of Virological Methods 171 (2011) 53–60

45. Bardiya N, Bae JH. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol 2005; 67: 299–305.

46. Belsey M, Evans D, Pavlou A, Savopoulos J. Growth drivers and resistors of the influenza market: The importance of cell culture flu. J Commercial Biotechnol 2005;12 (2):150–5.

47. Groth N, Montomoli E, Gentile C, Manini I, Bugarini R, Podda A. Safety, tolerability and immunogenicity of a mammalian cell-culturederived influenza vaccine: A sequential Phase I and Phase II clinical trial. Vaccine 27 (2009) 786–791

48. Katz J M, Naeve CW & Webster RG. Host cell-mediated variation in H3N2 influenza viruses. Virology 156, 1987; 386–395.

49. Liu Jonathan, Shi X, Schwartz R, Kemble G. Use of MDCK cells for production of live attenuated influenza vaccine. Vaccine 27 (2009) 6460–6463

50. Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, et al. Transmission and pathogenesis of swine-origin 2009 A (H1N1) influenza viruses in ferrets and mice. Science 2009; 325:484–7.

51. Mochalova L, Gambaryan A, Romanova J, Tuzikov A, Chinarev A, Katinger D, et al. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology 313 (2003) 473–480

52. Naffakh N, Van der Wef S. April 2009: an outbreak of swine-origin influenza A(H1N1) virus with evidence for human to human transmission. Microbes and Infection 11 (2009) 725-728.

53. Nicholson KG, Wood JM, Zambon M. Influenza. The Lancet. Vol 362 November 22, 2003

54. Robertson JS, Cook P, Attwell AM, et al. Replicative advantage in tissue culture of egg-adapted influenza virus over tissue-culture derived virus: implications for vaccine manufacture. Vaccine 1995; 13:1583–8.

55. Saito T. Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. Journal of General Virology (2010), 91, 938–948

56. Takemae N, Ruttanapumma R, Parchariyanon S, Yoneyama S, Hayashi T, Hiramatsu H, et al. Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. Journal of General Virology (2010), 91, 938–948

57. Yewdell J and Garcia-Sastre A. Influenza virus still surprises. Current Opinion in Microbiology 2002, 5:414–418

58. Zhirnov OP, Vorobjeva IV, Saphonova OA, Malyshev NA, Ovcharenko AV, Klenk HD. Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. Biochemistry (Mosc.) 72, 2007; 398–408.
------------------------------------------------------------------------------DOI: http://dx.doi.org/10.22490/24629448.491

Descargas

La descarga de datos todavía no está disponible.