Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Relación entre virulencia y resistencia antimicrobiana en Acinetobacter baumannii

Relación entre virulencia y resistencia antimicrobiana en Acinetobacter baumannii



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Zuñiga, A. E., Chávez, M., Gómez, R. F., Cabrera, C. E., Corral, R. E., & López, B. (2010). Relación entre virulencia y resistencia antimicrobiana en Acinetobacter baumannii. NOVA, 8(14). https://doi.org/10.22490/24629448.455

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Andres E. Zuñiga
    Mónica Chávez
      Romel F. Gómez
        Cristina E. Cabrera
          Raúl E. Corral
            Bertha López

              Acinetobacter baumanni causa frecuentemente infecciones intrahospitalarias y actualmente se ha relacionado con el desarrollo de infecciones severas adquiridas en la comunidad. La capacidad de colonizar diversos hábitats y la versatilidad en su metabolismo ha influido en el incremento del número de infecciones nosocomiales, siendo responsable del desarrollo de enfermedades como: sepsis, neumonías y meningitis. Estas infecciones aparecen en forma de brotes, dominados por clones epidémicos con multirresistencia a los antibióticos que causan altas tasas de morbilidad y mortalidad. Las Unidades de Cuidados Intensivos son las más afectadas por el uso masivo de antibióticos que ocasiona la aparición de cepas multirresistentes. Es importante estudiar los mecanismos de patogénesis y la resistencia a los antibióticos, como factores directos que determinan el problema de salud.

               

              Por otra parte, las islas de patogenecidad que corresponde a material genético exógeno que ha sido integrado al genoma de la bacteria, explicaría en gran medida el carácter patogénico de la bacteria. Estas transportan genes que confieren multirresistencia a los antibióticos y son responsables directos de llevar genes involucrados en mecanismos patogénicos como son: el sistema de captación de hierro, el sistema para la formación de biopelículas en superficies abióticas, el mecanismo de formación de la proteína de membrana externa 38 y los sistemas de secreción de proteínas tipo IV, que han sido demostrados como responsables directos de la patogénesis de diversos patógenos. En este artículo se revisa la situación actual de la incidencia de las infecciones nosocomiales causadas por A. baumannii multirresistente a los antibióticos, los principales mecanismos de resistencia a fármacos y la asociación de ésta con los mecanismos de patogenicidad. El conocimiento de los elementos involucrados en la patogénesis de A. baumannii permitirá establecer los mecanismos que lleven a controlar su diseminación.


              Visitas del artículo 262 | Visitas PDF 127


              Descargas

              Los datos de descarga todavía no están disponibles.
              1. Martinez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev. 2002;15:647-679.
              2. Muñoz Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358:1271-81.
              3. Abdel-El-Haleem D. Acinetobacter: Environmental and biotechnological applications. Afr J Biotechnol. 2003;2:71–74.
              4. Ibrahim A, Gerner-Smidt, P, Liesak W. Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol. 1997;47:837-841.
              5. Nemec AL, Dijkshoorn I, Cleenwerck T, De Baere D, Janssens TJ, Van Der Reijden, et al. Acinetobacter parvus sp. nov., a small-colonyforming species isolated from human clinical specimens. Int J Syst. Evol. Microbiol. 2003;53:1563–1567.
              6. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin Microbiol Rew. 2008;21:538-582.
              7. Pérez F, Hujer AM, Hujer K, Decker BK, Rather PN, Bonomo RA Global Challenge of Multidrug Resistant Acinetobacter baumannii. Antimicrob Agents Chemoter. 2007;51:3471-3484.
              8. Bouvet PJM, Grimmont PAD. Identification and biotyping of clinical isolates of Acinetobacter. Ann Rev Microbiol. 1987;38:569-578.
              9. Domínguez M, González G, Bello H, García A, Mella S, Pinto ME, et al. Identification and biotyping of Acinetobacter spp isolated in Chile an hospitals. J Hosp Infect. 1995;30:267-271.
              10. Smolyakov R, Borer A, Riesenberg K, Schlaeffer F, Alkan M, Porath A, et al. Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: risk factors and outcome with ampicillinsulbactam treatment. J Hosp Infect. 2003;54:32–38.
              11. Hiong C, Joseph T, Cunha BA. Acinetobacter baumannii line-associated infection. Heart Lung. 2000;29:222-224.
              12. Chastre J. Trouillet, JL. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect. 2000;15:287–298.
              13. Beggs CB, Kerr KG, Snelling PA. Acinetobacter spp. and the Clinical Environment. Indoor Built Environ 2006;15:19–24.
              14. Fournier PE, Vallenet V, Barbe S, Audic H, Ogata L, Poirel H. et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006. 2:e7.
              15. Bayuga S, Zeana C, Sahni J, Della-Latta P, el-Sadr W, Larson E. Prevalence and antimicrobial patterns of Acinetobacter baumannii on hands and nares of hospital personnel and patients: the iceberg phenomenon again. Heart Lung. 2002;31:382-390.
              16. Jawed A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998;36:1938–1941.
              17. Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T: Carbapenemresistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect. 2002;50:110–114.
              18. Borer A, Gilad J, Smolyakov R, Eskira S, Peled N, Porat N, et al. Cell phones and Acinetobacter transmission. Emerg Infect Dis. 2005;11:1160–1161.
              19. Allen KD, Green HT. Hospital outbreaks of multiresistant Acinetobacter anitratus: an airborne mode of spread?. J Hosp Infect 1987;9:110-119.
              20. Cefai CJ, Richards F, Gould K, McPeake P. An outbreak of Acinetobacter respiratory tract infection resulting from incomplete disinfection of ventilatory equipment. J Hosp Infect. 1990;15:177–182.
              21. Sheretz RJ, Sullivan ML. An outbreak of infections with Acinetobacter calcoaceticus in burn patients: contamination of patients’ mattresses. J Infect Dis. 1985;151:252–258.
              22. Weernink A, Severin WPJ, Tjernberg I, Dijkshoorn L. Pillows, an unexpected source of Acinetobacter. J Hosp Infect. 1995;29:189-199.
              23. Jawad A, Hawkey PM, Heritage J, Snelling AM. Description of Leeds Acinetobacter Medium, a new selective and differential medium for isolation of clinically important Acinetobacter spp., and comparison with Herellea agar and Holton’s agar. J Clin Microbiol. 1994;32:2353–2358.
              24. Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin
              25. Microbiol. 1997;35:2819–2825.
              26. Henwood CJ, Gatward T, Warner M, James D, Stockdale MW, Spence RP, et al. Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). J Antimicrob Chemother. 2002;49:479–487.
              27. Fluit A, Schimitz F, Verhoef J and the European Sentry. Participants Group. Frequency of isolation of pathogens from blood-stream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. Eur J Clin Infect Dis. 2001; 20:188-191.
              28. Van Looveren M, Goossens H. Antimicrobial resistance of Acinetobacter spp. Europe Clin Microbiol Infect. 2004;10:684–704.
              29. Diekema DJ, Pfaller MA, Jones RN, Doern GV, Winokur PL, Gales AC, et al. Survey of bloodstream infections due to gram-negative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, and Latin America for the SENTRY antimicrobial surveillance program. Clin Infect Dis. 1999;29:595–607.
              30. Rello j, Torres A. Microbial causes of ventilator-associated pneumonia. Semin Respir Infect1996;11:24-31.
              31. Torres A, Aznar R, Gatell JM, Jimenez P, Gonzalez J, Ferrer A, et al. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis. 1990;142:523–528.
              32. Hawley JS, Murray CK, Griffith ME, McElmeel ML, Fulcher LC, Hospenthal, Jorgensen HJ. Susceptibility of Acinetobacter Strains Isolated from Deployed U.S. Military Personnel. Ant Agents Chem. 2007;51:376–378.
              33. Turton JF, Kaufmann ME, Gill MJ, Pike R, Scott PT, Fishbain J, et al. Comparison of Acinetobacter baumannii Isolates from the United Kingdom and the United States That Were Associated with Repatriated Casualties of the Iraq Conflict. J Clin Microbiol. 2006;44:2630–2634.
              34. Davis KA, Moran KA, Mcallister K, et al. Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis. 2005;11:1218-1224.
              35. Garzoni C, Emonet S, Legout L, Benedict R, Hoffmeyer P, Bernard L, Garbino J. Atypical infections in tsunami survivors. Emerg Inf Dis. 2005;11:1591-1593.
              36. Leung WS, Chu CM, Tsang KY, Lo FH, Lo KF, Ho PL. Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest. 2006;129:102-109.
              37. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clínical, and epidemiological features. Clin Microbiol Rev. 1996;9:148-165.
              38. Danes C, Navia MM, Ruiz J, Marco F, Jurado A, Jimenez de Anta MT, Vila J. Distribution of β-lactamases in Acinetobacter baumannii clinical isolates and the effect of Syn 2190 (AmpC inhibitor) on the MICs of different β-lactam antibiotics. J Ant Chem. 2002;50:261–264.
              39. Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. Imipenem resistance in Acinetobacter baumannii is due to altered penicillinbinding proteins. Chemotherapy. 1991;37:405–412.
              40. Clark RB. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein. J Ant Chem. 1996;38:245–251.
              41. Fernández-Cuenca FL. Martınez-Martı´nez MC, Conejo JA, Ayala EJ, Pascual A. Relationship between B-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother. 2003;51:565–574.
              42. Paul G, Joly-Guillou ML, Bergogne-Bérezin E. et al. Novel carbenicillin- hydrolysing β-lactamase (CARB-5) from Acinetobacter calcoaceticus var. anitratus. FEMS Microbiol Lett. 1989;59:45–50.
              43. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA- 25, OXA-26, and OXA-27, molecular class D b-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001;45:583–588.
              44. Donald HM, Scaife W, Amyes SGB, Young HK. Sequence analysis of ARI-1, a novel OXA b-lactamase, responsible for imipenem-resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000;44:196–199.
              45. Chu YW, Afzal-Shah M, Houang ET, et al. IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. Collected in Hong-Kong between 1994 and 1998. Antimicrob Agents Chemother. 2001;45:710–714.
              46. Riccio ML, Franceschini N, Boschi L, et al. Characterization of the metallo-b-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother. 2000;44:1229–1235.
              47. Bou G, Martinez-Beltran J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2000;44:428–432.
              48. Barlow M, Hall BG. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob Agents Chemother. 2002;46:1190–1198.
              49. Brown S, Amyes S. OXA b-lactamases in Acinetobacter: the story so far. J Ant Chem. 2006;57:1–3.
              50. Hornstein M, Sautjeau-Rostoker C, Péduzzi J, Vessières A, Hong LT, Barthélémy M, Scavizzi M, Labia R. Oxacillin-hydrolyzing beta-lactamase involved in resistance to imipenem in Acinetobacte baumannii. FEMS Microbiol Lett. 1997;153:333–339.
              51. Vila J, Navia M, Ruiz J, Casals C. Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived beta-lactamase in Acinetobacter baumannii.. Antimicrob Agents Chemother. 1997;1:757–759.
              52. De Champs C, Poirel L, Bonnet R, Sirot D, Chanal C, Sirot J, Nordmann P. Prospective survey of beta-lactamases produced by ceftazidime- resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob Agents Chemother. 2002;46:3031–3034.
              53. Navia MM, Ruiz J, Vila J. Characterization of an integron carrying a new class D b-lactamase (OXA-37) in Acinetobacter baumannii. Microb Drug Res. 2002;4:261–265.
              54. Naas T, Sougakoff W, Casetta A, Nordmann P. Molecular characterization of OXA-20, a novel class Db-lactamase, and its integrin from Pseudomonas aeruginosa. Antmicrob Agents Chemother. 1998;42:2074–2083.
              55. Ploy MC, Denis F, Courvalin P, Lambert T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother. 2000;44:2684–2688.
              56. Ribera A, Vila J, Fernández-Cuenca F, Martínez-Martínez L, Pascual A, Beceiro A, et al. Type 1 Integrons in Epidemiologically Unrelated Acinetobacter baumannii Isolates Ant Agents Chem. 2004;48:364–365.
              57. Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A, Triassi M, et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J Clin Microbiol. 2004;42:946–953.
              58. Lopez-Otsoa F, Gallego L, Towner KJ, Tysall L, Woodford N, Livermore DM. Endemic carbapenem resistance associated with OXA-40 carbapenemase among Acinetobacter baumannii isolates from a hospital in Northern Spain. J Clin Microbiol. 2002;40:4741–4743.
              59. Yu YS, Yang Q, Xu XW, Kong HS, Xu GY, Zhong BY. Typing and characterization of carbapenem-resistant Acinetobacter calcoaceticus- baumannii complex in a Chinese hospital. J Med Microbiol. 2004;53:653–656.
              60. Dalla-Costa LM, Coelho JM, Souza HA et al. Outbreak of carbapenemresistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J Clin Microbiol. 2003;41:3403–3406.
              61. Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect. 2005;11:11–15.
              62. Brown S, Amyes SGB. The sequences of seven class D b-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin Microbiol Infect. 2005;11:326–329.
              63. Sato K, Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implementation in antibiotic resistance. J Clin Microbiol.1991; 28:35-45.
              64. Fernández-Cuenca F, Pascual A, Ribera A, Vila J, Bou G, Cisneros JM, Rodríguez-Baño J, Pachón J, Martínez-Martínez L. Diversidad clonal y sensibilidad a los antimicrobianos de Acinetobacter baumannii aislados en hospitales españoles. Estudio multicéntrico nacional: proyecto GEIH-Ab 2000. Enf Infec Microbiol Clin. 2004;22:267-271.
              65. Qualle J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis. 2003;37:214–220.
              66. Nemec A, Dolzani L, Brisse S, Van den Broek P, Dijkshoorn L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii; clones. J Med Microbiol. 2004;53:1233–1240.
              67. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006; 50:4114–4123.
              68. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis.2007;45:88–94.
              69. Yamane K, Wachino J, Doi Y, Kurokawa H, and Arakawa Y. Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis. 2005; 11:951–953.
              70. Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, et al. Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis. 2006;56:305–312.
              71. Doi Y, Adams JM, Yamane K, Paterson DL. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother. 2007; 51:4209–4210.
              72. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T. AbeM, an H_-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob. Agents Chemother.2005. 49: 4362–4364.
              73. Vila J, Ruiz J, Goñi P, Jiminez de Anta MT. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother. 1997;39:757-762.
              74. Ribera A, Ruiz J, Jiménez de Anta MT, Vila J. Effect of an efflux pump inhibitor on the MIC of nalidixic acid for Acinetobacter baumannii and Stenotrophomonas maltophilia clinical isolates. J Antimicrob Chemother. 2002;49:697–698
              75. ------------------------------------------------------------------------------
              76. DOI: http://dx.doi.org/10.22490/24629448.455 .
              Sistema OJS 3.4.0.5 - Metabiblioteca |