Bodas de plata de la reacción en cadena de la polimerasa (PCR)

Contenido principal del artículo

Autores

Gladys Pinilla Karen Cubillos Mónica Rodríguez

Resumen

Invenciones verdaderamente revolucionarias han promovido el cambio de pensamiento y la manera de trabajar en el ámbito del laboratorio. Una de estas invenciones es la reacción en cadena de la polimerasa, la cual ha aportado de manera significativa al conocimiento científico. Las diferentes metodologías que aplican la reacción en cadena de la polimerasa han permitido a los investigadores manipular la información genética de los organismos, facilitando procedimientos como la clonación y la secuenciación, entre otros, lo cual agilizó significativamente los resultados del Proyecto Genoma Humano. Existe diversidad de variantes de la reacción en cadena de la polimerasa convencional. Este escrito tiene por objetivo presentar una revisión sobre el tema, especialmente sobre la reacción en cadena de la polimerasa en tiempo real, debido a las ventajas que ofrece.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos. 

Carta de originalidad y cesión de derechos de publicación

Se debe presentar para proceso editorial con fines de publicación del artículo una carta de originalidad y cesión de derechos de publicación (Descargar Aquí)

 

Referencias

1. Mullis BK. The unusual origin of the Polymerase Chain Reaction. Sci Am. 1990;262:56-65.

2. McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. A physical map of the human genome. Nature. 200;409:934-941.

3. Rodriguez IP, Barrera H. La reaccion en cadena de la polimerasa a dos decadas de su invencion. Ciencia UANL.2004;7:323-332.

4. Mocellin S, Rossi CR, Pilati P, Nitti D,Marincola FM. Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol Med. 2003;9:189-195.

5. Templeton KE, Scheltinga SA, Graffelman WA, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of realtime PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J Clin Microbiol. 2003;41:4366–4371.

6. Costa J. Reaccion en cadena de la polimerasa (PCR) a tiempo real. Enferm Infecc Microbiol Clin. 2004;22:299-305.

7. Luque JC, Herraez SA. Texto ilustrado de Biologia Molecular e Ingenieria Genetica. Ed. Harcourt.2000. pg 313.

8. Innia M, Gelfand D, Sninsky J. PCR strategies. Academic Press New York USA.1995:325.

9. Choi S, Kim S-H, Kim H-J, Lee D-G, Choi J-H, Yoo J-H, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J. Korean Med Sci. 2003;18:631-636.

10. Jimenez A, Gomez R, Agirre X, Barrios M, Navarro G, Eneriz E, et al. PCR en tiempo real, una nueva herramienta para la toma de decisiones clinicas. Haematologica. 2006;91:27-34.

11. Kaltenboeck B, Wang C. Advances in real-time PCR: application to clinical laboratory diagnostics. Adv Clin Chem. 2005;40:219-259.

12. Heid CA, Stevens J, Livak JK, Williams M. Real Time Quantitative. Genome Res.1996;6:986-994.

13. Equipos para RT-PCR. Disponible en www.Biorad.com.

14. Rutledge RG, Cote C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 2003;31:3-6.

15. Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci.2005;109:365–379.

16. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27:95–125.

17. Wong M, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39:75-85.

18. Peirson S, Butler J, Foster R. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 2003;31:e73.

19. Pfaffl M. A new mathematical model for relative quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001;29:e45.

20. Kainz P. The PCR plateau phase - towards an understanding of its limitations. Biochim Biophys Acta. 2000;1494:23-27.

21. Al-Soud WA, Jhonsson LJ, Radstrom P. Identification and Characterization of Immunoglobulin G in Blood as a Major Inhibitor of Diagnostic PCR. J Clin Microbiol. 2000;38:345-350.

22. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39:485-493.

23. Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35:1-8.

24. Nazarenko I, Lowe B, Darfler M, Ikonomi P, Schuster D, Rashtchian A. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res. 2002;30:e37.

25. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29:23–39.

26. Provenzano M, Rossi C, Mocellin S. The usefulness of quantitative real-time PCR in immunogenetics. Third Quarter. 2001:89-91.

27. Burggraf S, Olgemoller B. Simple technique for internal control of real-time amplification assays. Clin Chem. 2004;50:819–825.

28. Memorias Curso teorico-practico de PCR en tiempo real. Corpogen. Julio 26 y 27 de 2007.

29. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology:applications for routine laboratory testing. Clin Microbiol Rev. 2006;19:165-256.
30. Yuan J, Reed A, Chen F, Stewart N. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;85:1471-2105.

31. Pfaffl M, Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol Lett. 2001;23:275–282.

32. Gibson U, Heid CA, Williams PM. A Novel method for real time quantitative RT-PCR. Genome Res.1996;6:995-1001.

33. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:1402–1408.

34. Zucol F, Ammann RA, Berger C, Aebi C, Altwegg M, Niggli FK, et al. Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. J Clin Microbiol. 2006;44:2750-2759.

35. Vandecasteele SJ, Peetermans WE, Merckx R, Eldere V. Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol. 2001;183:7094–7101.

36. Rodicio M, Mendoza M. Identificacion bacteriana mediante secuenciacion del ARNr 16S:fundamento,metodologia y aplicaciones en microbiologia clinica. Enferm Infecc Microbiol Clin. 2004;22:238-245.

37. Beck B, Hoelsmeyer M, Paul S, Downs D. A mutation in the essential gene gmk (encoding guanlyate kinase) generates a requirement for adenine at low temperature in Salmonella enterica. J Bacteriol. 2003;185:6732-6735.

38. Skurray R, Brow M. Identification of Suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance systems by quantitative real-time PCR. J Microbiol Meth.2007;70:355-362.

39. Unkles S, Logsdon J, Robinson K, Kinghorn J, Duncan J. The tpiA gene is a transcripcional isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota. J Bacteriol.1997;179:6816-6823.

40. Xu Y, Hong Y, Hall T. Rice triosephosphate isomerase gene 5’ sequence directs β-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol.1994;106:459-467.

41 Plamannt D. Michael, Stauffer VG. Regulation of the Escherichia coli glyA Gene by the metR Gene Product and Homocysteine. J Bacteriol. 1989;171:4958-4962.

42. Purvis IJ, Loughlin L, Bettany AJ, Brown AJ. Translation and stability of an Escherichia coli beta-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 1987;15:7963-7974.

43. Poysti J, Nathan, Oresnik J. Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol. 2007;189:3445–3451.

44. Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000;46:69-81.

45. Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, et al. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell
Probes.2005;19:101–109.

46. Dheda K, Huggett J, Bustin S, Johnson M, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004;37:112-119.

47. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–284.

48. Bonilla E, Parraga M, Lopez LA, Escolar F, Del Marzo J. Cuantificacion de la expresion genica a partir de un numero limitado de celulas mediante RT-PCR en tiempo real. Bioquimia.
2002;27:3-7.

49. Burkhard M, Charlotta L, Wagner M, Kra¨mer N, Hoorfar J. Enumeration of Salmonella bacteria in food and feed samples by real-time pcr for quantitative microbial risk assessment. Appl Environ Microbiol. 2008;74:1299-1304.

50. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L. Evaluation of DNA extraction methods for use in combination with SYBR Green I Real-Time PCR to detect Salmonella enterica serotype Enteritidis in Poultry. Appl Environ Microbiol. 2003;69:3456-3461.

51. Burkhard M, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R. Diagnostic Real-Time PCR for detection of Salmonella in food. Appl Environ Microbiol. 2004;70:7046-7052.

52. Artin I, Bjorkman P, Cronqvist J, Radstrom P, Holst E. First case of type E wound botulism diagnosed using real-time PCR. J Clin Microbiol. 2007;45:3589–3594.

53. Fenicia L, Anniballi F, De Medici D, Delibato E, Aureli P. SYBR green real-time PCR method to detect Clostridium botulinum type A. Appl Environ Microbiol. 2007;73:2891–2896.

54. Yoon SY, Chung GT, Kang DH, Ryu C, Yoo CK, Seong WK. Application of real-time pcr for quantitative detection of Clostridium botulinum Type A toxin gene in food. Microbiol Immunol. 2005;49:505-511.

55. Edwards KJ, Kaufmann ME, Unders NA. Rapid and accurate identification of coagulase-negative staphylococci by real-time PCR.. J Clin Microbiol. 2001;39:3047-3051.

56. Kane TD, Alexander JW, Johannigman JA. The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann. Surg. 1998;227:1–9.

57. Cursons RT, Jeyerajah E, Sleigh JW. The use of polymerase chain reaction to detect septicemia in critically ill patients. Crit Care Med.1999;27:937–940.

58. Lu JJ, Perng CL, Lee SY, Wan CC. Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol. 2000;38:2076–2080.

59. Rantakokko-Jalava K, Nikkari S, Jalava J, Eerola E, Skurnik M, Meurman O, et al. Direct amplification of rRNA genes in diagnosis of bacterial infections. J Clin Microbiol. 2000;38:32-39.

60. Mariani BD, Martin DS, Levine MJ, Booth RE Jr, Tuan RS. The coventry award polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop Relat Res. 1996;331:11- 22.

61. Klaschik S, Lehmann LE, Raadts A, Book M, Hoeft A, Stuber F. Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria. J Clin Microbiol. 2002;40:4304-4307.

62. Rosato EA, Craig A, William, Archer LG. Quantitation of mecA transcription in oxacillin-resistant Staphylococcus aureus clinical isolates. J Bacteriol. 2003;185:3446–3452.
63. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods. 2004;56:277-286.

64. Theis T, Skurray AR, Brown HM. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microbiol Methods. 2007;70:355–362.

65. Diederen B, Kluytmans J, Vandenbroucke CM, Peeters MF. Utility of Real-Time PCR for Diagnosis of Legionnaires’ Disease in Routine Clinical Practice. J Clin Microbiol. 2008;46:671–677.

66. Stolhaug A, Bergh K. Identification and differentiation of Legionella pneumophila and Legionella spp. with real-time PCR targeting the 16S rRNA gene and species identification by mip sequencing. Appl. Environ. Microbiol. 2006;72:6394–6398.

67. Templeton KE, Scheltinga SA, Graffelman AW, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of real-time PCR, real time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J. Clin. Microbiol. 2003;41:4366–4371.

68. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of communityacquired pneumonia in hospitalized children. Pediatrics. 2004;113:701–707.

69. Gullsby K, Storm M, Bondeson K. Simultaneous Detection of Chlamydophila pneumoniae and Mycoplasma pneumoniae by Use of Molecular Beacons in a Duplex Real-Time PCR. J Clin Microbiol. 2008;46:727–731.

70. Welti, Jaton MK, Altwegg M, Sahli R, Wenger A, Bille J. Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect. Dis. 2003;45:85–95.
-----------------------------------------------------------------------------------
DOI: http://dx.doi.org/10.22490/24629448.397

Descargas

La descarga de datos todavía no está disponible.