Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Principales reguladores hormonales y sus interacciones en el crecimiento vegetal

Main hormonal regulators and their interactions in plant growth



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Alcántara Cortes, J. S., Acero Godoy, J., Alcántara Cortés, J. D., & Sánchez Mora, R. M. (2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. REVISTA NOVA , 17(32), 109-129. https://doi.org/10.25058/24629448.3639

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Una hormona vegetal o fitohormona es un compuesto producido internamente por una planta, que ejerce su función en muy bajas concentraciones y cuyo principal efecto se produce a nivel celular, cambiando los patrones de crecimiento de los vegetales y permitiendo su control. Los reguladores vegetales son compuestos sintetizados químicamente u obtenidos de otros organismos y  son, en general, mucho más potentes que los análogos naturales.   Es necesario tener en cuenta aspectos críticos como oportunidad de aplicación, dosis, sensibilidad de la variedad, condición de la planta, etc., ya que cada planta requerirá de unas condiciones específicas de crecimiento que pueden afectarse por la concentración de ellos en el medio. Los reguladores vegetales son productos sintéticos que se han convertido en las primeras herramientas capaces de controlar el crecimiento y  actividad bioquímica de las plantas por lo que su uso ha aumentado en los últimos años.

Esta revisión busca hacer una recopilación bibliográfica de los primeros acontecimientos de la aplicación de los reguladores de crecimiento vegetal. Se presentan las principales características fisiológicas que pueden desarrollar la aplicación de estos sobre el crecimiento vegetal a nivel celular y su repercusión a nivel fenotípico; además, se describen las principales fitohormonas más conocidas en la aplicación biotecnológica. Entre ellas se encuentran auxinas, giberelinas, citoquininas, ácido abscísico, ácido salicílico, poliaminas, jasmonatos y derivados, brasinoesteroides, etileno y estrigolactonas. Se detallan las principales funciones a nivel del metabolismo vegetal y sus posibles interacciones intra e intercelular.


Visitas del artículo 8269 | Visitas PDF 3189


Descargas

Los datos de descarga todavía no están disponibles.

1. Vega-Celedón P, Canchignia Martínez H, González M, Seeger M. Biosynthesis of indole-3-acetic acid and plant growth promoting by bacteria. Cultiv Trop. 2016;37(especial):33–9.
2. Hussain A, Ahmed Qarshi I, Nazir H, Ullah I. Re- cent Advances in Plant in vitro Culture. Vol. 1, In- tech. 2012. 221 p.
3. Bisht TS, Rawat L, Chakraborty B, Yadav V. A Re- cent Advances in Use of Plant Growth Regulators (PGRs) in Fruit Crops - A Review. Int J Curr Micro- biol Appl Sci. 2018;7(05):1307–36.
4. Garay-Arroyo A, de la Paz Sánchez M, García-Ponce B, Álvarez-Buylla ER, Gutiérrez C. La Homeosta- sis de las Auxinas y su Importancia en el Desarro- llo de Arabidopsis Thaliana. REB Rev Educ bio- química [Internet]. 2014;33(1):13–22. Available from: http://www.scielo.org.mx/scielo.php?script=s- ci_arttext&pid=S1665-19952014000100003&ln- g=es&nrm=iso&tlng=es
5. George EF, Hall MA, Klerk GJ De. Plant Growth Regultors I: Introduction; Auxins, their Analogues and Inhibitoors. In: Plant Propagation by Tissue Culture 3rd Edition. 2008. p. 1–501.
6. Lozano kretzschmar GA. Propagación in vitro de café ( Coffea arabica ) -variedad Lempira- a partir de meristemas Propagación in vitro de café ( Coffea arabica ) -variedad Lempira- a partir de meristemas. Escuela Agricola panamericana; 2014.
7. Gupta R, Chakrabarty SK. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal Behav. 2013;8(9).
8. Salazar-Cerezo S, Martínez-Montiel N, García-Sán- chez J, Pérez-y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A con- vergent route for plants, fungi and bacteria. Mi- crobiol Res [Internet]. 2018;208(January):85–98. Available from: https://doi.org/10.1016/j.mi- cres.2018.01.010
9. Vega-Celedón P, Canchignia Martínez H, González M, Seeger M. Biosynthesis of indole-3-acetic acid and plant growth promoting by bacteria. Cultiv Trop. 2016;37(especial):33–9.
10. Hussain A, Ahmed Qarshi I, Nazir H, Ullah I. Re- cent Advances in Plant in vitro Culture. Vol. 1, In- tech. 2012. 221 p.
11. Bisht TS, Rawat L, Chakraborty B, Yadav V. A Re- cent Advances in Use of Plant Growth Regulators (PGRs) in Fruit Crops - A Review. Int J Curr Micro- biol Appl Sci. 2018;7(05):1307–36.
12. Garay-Arroyo A, de la Paz Sánchez M, García-Ponce B, Álvarez-Buylla ER, Gutiérrez C. La Homeosta- sis de las Auxinas y su Importancia en el Desarro- llo de Arabidopsis Thaliana. REB Rev Educ bio- química [Internet]. 2014;33(1):13–22. Available from: http://www.scielo.org.mx/scielo.php?script=s- ci_arttext&pid=S1665-19952014000100003&ln- g=es&nrm=iso&tlng=es
13. George EF, Hall MA, Klerk GJ De. Plant Growth Regultors I: Introduction; Auxins, their Analogues and Inhibitoors. In: Plant Propagation by Tissue Culture 3rd Edition. 2008. p. 1–501.
14. Lozano kretzschmar GA. Propagación in vitro de café ( Coffea arabica ) -variedad Lempira- a partir de meristemas Propagación in vitro de café ( Coffea arabica ) -variedad Lempira- a partir de meristemas. Escuela Agricola panamericana; 2014.
15. Gupta R, Chakrabarty SK. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal Behav. 2013;8(9).
16. Salazar-Cerezo S, Martínez-Montiel N, García-Sán- chez J, Pérez-y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A con- vergent route for plants, fungi and bacteria. Mi- crobiol Res [Internet]. 2018;208(January):85–98. Available from: https://doi.org/10.1016/j.mi- cres.2018.01.010
17. Tian H, Xu Y, Liu S, Jin D, Zhang J, Duan L, et al. Synthesis of gibberellic acid derivatives and their effects on plant growth. Molecules. 2017;22(5):2– 11.
18. Yong JWH, Ge L, Ng YF, Tan SN. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules [Internet]. 2009;14(12):5144–64. Available from: http://www. mdpi.com/1420-3049/14/12/5144/
19. Bottini R, Cassán F, Piccoli P. Gibberellin produc- tion by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Bio- technol. 2004;65(5):497–503.
20. Ferraro MG. Revisión del Aloe vera (Barbadensis Miller) en la dermatologia actual. Argent Dermatol. 2014;(90):218–23.
21. Colebrook EH, Thomas SG, Phillips AL, Hed- den P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol [Internet]. 2014;217(1):67–75. Available from: http://jeb.bio- logists.org/cgi/doi/10.1242/jeb.089938
22. Pita villamil JM, Perez Garcia F. Germinacion de se- millas. In: Ministerio de agricultura pesca y alimen- tacion. 2013. p. 1–20.
23. Kieber JJ. Cytokinins. Arab B. 2002;1:0–25.
24. Boase MR, Wright S, McLeay PL. Coconut milk en- hancement of axillary shoot growth in vitro of kiwi- fruit. New Zeal J Crop Hortic Sci. 1993;21(2):171–6.
25. Werner T, Motyka V, Strnad M, Schmulling T. Re- gulation of plant growth by cytokinin. Proc Natl Acad Sci [Internet]. 2001;98(18):10487–92. Avai- lable from: http://www.pnas.org/cgi/doi/10.1073/ pnas.171304098
26. Murai N. Review: Plant Growth Hormone Cyto- kinins Control the Crop Seed Yield. Am J Plant Sci [Internet]. 2014;05(14):2178–87. Available from: http://www.scirp.org/journal/doi.aspx?- DOI=10.4236/ajps.2014.514231
27. George EF, Hall MA, Klerk G-J De. Plant Grow- th Regulators II : Cytokinins , their Analogues and Antagonists, Plant propagation by tissue culture. In: Plant Propagation by Tissue Culture 3rd Edition. 2008. p. 205–26.
28. Arkhipova TN, Vysotskaya LB, Martinenko EV, Iva- nov II, Kudoyarova GR. Participation of cytokinins in plant response to competitors. Russ J Plant Phy- siol. 2015;62(4).
29. Finkelstein R. Abscisic Acid Synthesis and Respon- se. Arab B. 2013;1(November 2013):1–36.
30. 22. Fujii H. Abscisic Acid Implication in Plant Growth and Stress Response. 2014;37–54.
31. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M. Abscisic acid and the control of seed dor- many and germination. Seed Sci Res. 2010;20(May 2014):55–67.
32. Cowan AK. Abscisic acid biosynthesis in vascular plants is a constitutive process. South African J Bot [Internet]. 2001;67(4):497–505. Available from: http://dx.doi.org/10.1016/S0254-6299(15)31182-0
33. El-yazied AA. Effect of Foliar Application of Sali- cylic Acid and Chelated Zinc on Growth and Pro- ductivity of Sweet Pepper ( Capsicum annuum L
.) under Autumn Planting. Res J Agric Biol Sci. 2011;7(March):423–33.
34. Rangel G, Castro E, Beltran E, Cruz H, García E. El acido salicílico y su participación en la resistencia a patógenos en plantas. Biológicas. 2010;12(2):90–5.
35. Nazar R, Umar S, Khan NA, Sareer O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline ac- cumulation and ethylene formation under drought stress. South African J Bot [Internet]. 2015;98:84–
94. Available from: http://dx.doi.org/10.1016/j. sajb.2015.02.005
36. Couée I, Hummel I, Sulmon C, Gouesbet G, El Amrani A. Involvement of polyamines in root development. Plant Cell Tissue Organ Cult. 2004;76(January):1–10.
37. Rivera A, Conde P, Cañal MJ, Fernández H. Biote- chnology and Apogamy in Dryopteris affinis spp . affinis : The Influence of Tissue Gibberellic Acid , and Polyamines. 2018;139–52.
38. Kaur-sawhney R, Tiburcio AF, Altabella T, Gals- ton AW. Polyamines in plants : An overview. J Cell Mol Biol [Internet]. 2003;2(January 2003):1–12. Available from: http://citeseerx.ist.psu.edu/view- doc/download?doi=10.1.1.460.7929&rep=rep1&- type=pdf
39. Lima, Giuseppina Pace Pereira., Campos, Renê Ar- noux da Silva., Willadino, Lilia Gomes., Camara, Terezinha J.R. and Vianello F. Polyamines , Gelling Agents in Tissue Culture , Micropropagation of Me- dicinal Plants and Bioreactors. In: Recent Advances in Plant In Vitro Culture [Internet]. 2012. p. 18. Available from: http://dx.doi.org/10.5772/51028
40. Habibi N, Suthar RK, Purohit SD. Role of pgrs and inhibitors in induction and control of Somatic em- bryogenesis in Themeda quadrivalvis. Indian J Exp Biol. 2009;47(3):198–203.
41. Fazilati M, Forghani AH. The role of polyamine to increasing growth of plant : As a key factor in health crisis. 2015;3(2):89–94.
42. Babenko L., Kosakivska I., SKaterna T. Jasmonic Acid: Role in Biotechnology and the Regulation of Plants Biochemical Process. Biorechnologia Acta. 2015;8(July):36–51.
43. Loake GJ, Ayyar P, Howat S. Jasmonates. Vol. 1, Encyclopedia of Applied Plant Sciences. 2016. 430– 436 p.
44. Schuman MC, Meldau S, Gaquerel E, Diezel C, McGale E, Greenfield S, et al. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmo- nate-Mediated Resistance to Herbivores in Nature. Front Plant Sci [Internet]. 2018;9(June). Available from: https://www.frontiersin.org/article/10.3389/ fpls.2018.00787/full
45. Koo AJ. Metabolism of the plant hormone jasmona- te: a sentinel for tissue damage and master regulator of stress response. Phytochem Rev. 2018;17(1):51– 80.
46. Yan Y, Borrego E, V. M. Jasmonate Biosynthesis, Perception and Function in Plant Development and Stress Responses. In: Lipid Metabolism [In- ternet]. 2013. p. 393–442. Available from: http:// www.intechopen.com/books/lipid-metabolism/ jasmonate-biosynthesis-perception-and-func- tion-in-plant-development-and-stress-responses
47. Huang H, Liu B, Liu L, Song S. Jasmonate ac- tion in plant growth and development. J Exp Bot. 2017;68(6):1349–59.
48. Kim J, Chang C, Tucker ML. To grow old: regula- tory role of ethylene and jasmonic acid in senescen- ce. Front Plant Sci [Internet]. 2015;6(January):1–7. Available from: http://journal.frontiersin.org/arti- cle/10.3389/fpls.2015.00020/abstract
49. Kazan K, Manners JM. Jasmonate Signaling: Toward an Integrated View. Plant Physiol [Internet]. 2008;146(4):1459–68. Available from: http://www. plantphysiol.org/cgi/doi/10.1104/pp.107.115717
50. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, et al. Jasmonates: Multifunctional Ro- les in Stress Tolerance. Front Plant Sci [Internet]. 2016;7(June). Available from: http://journal.fron- tiersin.org/Article/10.3389/fpls.2016.00813/abstract
51. Tang J, Han Z, Chai J. Q & A : what are brassinos- teroids and how do they act in plants ? BMC Biol [Internet]. 2016;14:1–5. Available from: http://dx. doi.org/10.1186/s12915-016-0340-8
52. Sirhindi G. Brassinosteroids: Biosynthesis and Role in Growth, Development, and Thermotoleran- ce Responses. In: Molecular Stress Physiology of Plants. Punjab, India; 2015. p. 309–29.
53. Hernández E, Martinez I. Brasinoesteroides en la agricultura . I. Rev Mex Ciencias Agric. 2016;7(2):441–50.
54. Saini S, Sharma I, Pati PK. Versatile roles of bras- sinosteroid in plants in the context of its homoeos- tasis, signaling and crosstalks. Front Plant Sci [In- ternet]. 2015;6(November):1–17. Available from: http://journal.frontiersin.org/Article/10.3389/ fpls.2015.00950/abstract
55. Kanwar MK, Bajguz A, Zhou J, Bhardwaj R. Analy- sis of Brassinosteroids in Plants. J Plant Growth Re- gul. 2017;36(4):1002–30.
56. Dubois M, Broeck L Van Den, Inzé D. The Pivo- tal Role of Ethylene in Plant Growth. Trends Plant Sci [Internet]. 2018;23(4):311–23. Available from: http://dx.doi.org/10.1016/j.tplants.2018.01.003
57. Iqbal N, Khan NA, Ferrante A, Trivellini A. Ethyle- ne Role in Plant Growth , Development and Se- nescence : Interaction with Other Phytohormones. Front Plant Sci. 2017;8(475):1–19.
58. Khan NA. Ethylene action in plants. Ethyl Action Plants. 2006;(January):1–206.
59. Pech J-C, Purgatto E, Bouzayen M, Latché A. Ethylene and fruit ripening. In: Plant Hormones: Biosynthesis, Signal Transduction, Action! 2010. p. 1–802.
60. Schaller GE. Ethylene and the regulation of plant development. BMC Biol. 2012;10:9–11.
61. Sun H, Tao J, Gu P, Xu G, Zhang Y, Sun H, et al. The role of strigolactones in root development. Plant Signal Behav. 2016;11(1).
62. Mishra S, Upadhyay S, Shukla RK. The role of stri- golactones and their potential cross-talk under hos- tile ecological conditions in plants. Front Physiol. 2017;7(JAN):1–7.
63. Koltai H, Kapulnik Y. Strigolactones as mediators of plant growth responses to environmental condi- tions. Plant Signal Behav. 2011;6(1):37–41.
64. Brewer PB, Koltai H, Beveridge CA. Diverse Roles of Strigolactones in Plant Developmen. Mol Plant [Internet]. 2013;6(1):18–28. Available from: http:// dx.doi.org/10.1093/mp/sss130
65. Smith SM. Q&A: What are strigolactones and why are they important to plants and soil microbes? BMC Biol. 2014;12:1–7.
66. Gutiérrez D, Sánchez Mora R. Alternative Treat- ments of Traditional Medicine for Chlamydia tra- chomatis, Causal Agent of an Asympomatic Infec- tion. Nova, 2018; 16(30), 65-74. Available from: http://www.scielo.org.co/scielo.php?script=sci_ art- text&pid=S1794-24702018000200065
67. Jamwal K, Bhattacharya S, Puri S. Plant grow- th regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants [Internet]. 2018;9(March):26–38. Available from: https://doi.org/10.1016/j.jar- map.2017.12.003

Sistema OJS 3.4.0.5 - Metabiblioteca |