Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular

Contenido principal del artículo

Resumen

Staphylococcus aureus se caracteriza por ser la principal causa de bacteriemia nosocomial en el mundo, debido al incremento en la resistencia, a los diferentes factores de patogenicidad y virulencia y la expresión de una gran variedad de proteínas las cuales pertenecen a las moléculas de la matriz adhesiva (MSCRAMM), presentes en la superficie de la bacteria cuya función es la colonización e invasión celular al hospedero y favorecer la formación  de biopelícula, El conjunto de estos mecanismos de patogenicidad y virulencia, le permiten a la bacteria persistir en el huésped y en el ambiente, sobreviviendo a factores adversos, al sistema inmune y a los antimicrobianos.

Palabras clave:

Detalles del artículo

Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Referencias

1.Tong S, Davis J, Eichenberger E, Holland T, Fowler V. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews. 2015;28(3):603-661
2.Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2017;9(1):522-554.
3.Siboo I, Cheung A, Bayer A, Sullam P. Clumping Factor A Mediates Binding of Staphylococcus aureus to Human Platelets. Infection and Immunity. 2001;69(5):3120-3127.
4.Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel B, Peters G. Staphylococcus aureusFibronectin‐Binding Protein (FnBP)–Mediated Adherence to Platelets, and Aggregation of Platelets Induced by FnBPA but Not by FnBPB. The Journal of Infectious Diseases. 2004;190(2):321-329.
5.Orenstein A. The discovery and naming of Staphylococcus aureus [citado Diciembre 2017]. http://www. antimicrobe.org/h04c.files/history/S-aureus.pdf
6.Etiopatogenia microbiológica Género Staphylococcus. Temas de Bacteriología y Virología Médica. 2nd ed. FEFMUR; 2006;259-266.
7.Wann E, Gurusiddappa S, Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem. 2000;275(18):13863– 13871.
8.Velázquez LA, Sánchez DM, Hernández O, Gonzales A, Henao D, Pérez A, et al. Colonización por Staphylococcus aureus en una población de pacientes VIH positivos de la ciudad de Medellín: perfil de sensibilidad antimicrobiana y caracterización de la resistencia a la meticilina. NOVA 2010;(14):133139.
9.Zendejas G, Avalos H, Soto M. Microbiología general de Staphylococcus aureus: Generalidades, patogenicidad y métodos de identificación. Rev Biomed 2014;25(3):129-143.
10.Naber C. Staphylococcus aureus Bacteremia: Epidemiology, Pathophysiology, and Management Strategies. Clin Infect Dis. 2009;48(4):231-237.
11.Boucher H, Corey G. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46(5):344-349.
12.Tong S, Davis J, Eichenberger E, Holland T, Fowler V. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin Microbiol Rev. 2015;28(3):608618.
13.Zurita J, Mejía C, Guzmán-Blanco M. Diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus in Latin America. Braz J Infect Dis. 2010;14(2):97-106.
14.Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental Phage Therapy against Staphylococcus aureus in Mice. Antimicrob agents chemother. 2007;51(8):2765-2773.
15.Feng Y, Chen C, Su L, Hu S, Yu J, Chiu C. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev. 2008;32(1):23-37.
16.García E, González R, Salazar P. Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab 2014;61(1):28-40.
17.Diep B, Gill S, Chang R, Phan T, Chen J, Davidson M et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367(9512):731-739.
18.Diep B, Stone G, Basuino L, Graber C, Miller A, Etages S et al. The Arginine Catabolic Mobile Element and Staphylococcal Chromosomal Cassette mec Linkage: Convergence of Virulence and Resistance in the USA300 Clone of Methicillin‐Resistant Staphylococcus aureus. J Infect Dis. 2008;197(11):1523-1530.
19.Thurlow L, Joshi G, Clark J, Spontak J, Neely C, Maile R et al. Functional Modularity of the Arginine Catabolic Mobile Element Contributes to the Success of USA300 Methicillin-Resistant Staphylococcus aureus. Cell Host Microbe. 2013;13(1):100107.
20.Velásquez L, Sánchez D, Hernández O, González A, Henao D, Pérez Á et al. Colonización por Staphylococcus aureus en una población de pacientes VIH positivos de la ciudad de Medellín: perfil de sensibilidad antimicrobiana y caracterización de la resistencia a la meticilina. Nova. 2010;8(14):133-139.
21.Ito T, Ma X, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. Novel Type V Staphylococcal Cassette Chromosome mec Driven by a Novel Cassette Chromosome Recombinase, ccrC. Antimic agents and chemother. 2004;48(7):2637–2651.
22.Ito T, Okuma K, Ma X, Yuzawa H, Hiramatsu K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat. 2003;6(1):41-52.
23.Melles D, van Leeuwen W, Boelens H, Peeters J, Verbrugh H, van Belkum A. Panton-Valentine Leukocidin Genes in Staphylococcus aureus. Emerg Infect Dis. 2006;12(7):1174-1175.
24.Camussone C, Calvinho L. Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevancia y rol como agentes inmunógenos. Rev Argent Microbiol. 2013;45(2):119-130.
25.O’Riordan K, Lee J. Staphylococcus aureus Capsular Polysaccharides. Clin Microbiol Rev. 2004;17(1):218-234.
26.Nanra J, Buitrago S, Crawford S, Ng J, Fink P, Hawkins J et al. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccin Immunother. 2013;9(3):480487.
27.Emerson J, Adams R, Román C, Brooks B, Coil D, Dahlhausen K et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5(1):1-23.
28.Hochbaum A, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory Effects of D-Amino Acids on Staphylococcus aureus Biofilm Development. J bacteriol. 2011;193(20):5616–5622.
29.Nazar J. Biofilms bacterianos. Rev. Otorrinolaringol. Cir. Cabeza Cuello 2007;67:61-72
30.Barraud N, Kjelleberg S, Rice SA. Dispersal from microbial biofilms. Microbiol Spectrum 2015;3(6):115.
31.Muñoz L, Salazar LM, Botero S, Navarrete J, Pinilla G. Possible antibiofilm effect of peptides derived from IcaR repressor of Staphylococcus epidermidis responsible for Hospital-Acquired Sepsis. Advances in computational biology. 2014;232:91-95.
32.Pinilla G, Muñoz L, Salazar LM, Navarrete J, Guevara A. Diseño de péptidos basado en la secuencia análoga al represor negativo icaR de Staphylococcus sp. Rev Colomb Quim. 2015;44(2):5-9.
33.Vila J, Soriano A, Mensa J. Bases moleculares de la adherencia microbiana sobre los materiales protésicos. Papel de las biocapas en las infecciones asociadas a los materiales protésicos. Enferm Infecc Microbiol Clin. 2008;26(1):48-55.
34.Harper D, Parracho H, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. Bacteriophages and Biofilms. Antibiotics. 2014;3:270-284.
Yarwood J, Bartels D, Volper E, Greenberg E. Quorum Sensing in Staphylococcus aureus biofilms. J bacteriol. 2004;186(6):1838–1850.
36.Kong K, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. . Int. J. Med. Microbio. 2006;296(2-3):133-139.
37.Herrera M. El papel del biofilm en el proceso infeccioso y la resistencia. Nova. 2004;2(2):71-80.
38.Castillo Borges ER, Bolio Rojas A, Méndez Novelo RI, Osorio Rodríguez JH, Pat Canul R. Remoción de materia orgánica en aguas residuales de rastro por el proceso de Contactor Biológico Rotacional. Ingeniería. 2012;16(2):83-91.
39.Castillo de Castro P, Tejero I. Consideraciones de diseño para la eliminación biológica de fósforo empleando procesos biopelícula. Ingeniería Agua. 1999;6(1):69-80.
40.O’Brien L, Walsh E, Massey R, Peacock S, Foster T.Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol. 2002;4(11):759-770.
41.Pinilla G, Bautista A, Cruz C, Chavarro B, Navarrete J, Muñoz L, Gutiérrez J. Determinación de factores de adhesión asociados a la formación de biopelícula en aislamientos clínicos de Staphylococcus aureus y Staphylococcus epidermidis. Nova. 2017;15(27):67-75.
42.Roblero J, Garcia E, Rodriguez S, Cancino M, Cancino J. Surface Proteins of Staphylococcus aureus. En: Enany S, Crotty L, ed. by. The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus [Internet]. IntechOpen; 2017 [citado 5 de Septiembre de 2018]. p. 169-185. Disponible en: https://www.intechopen.com/books/the-rise-of-virulence-and-antibiotic-resistance-in-staphylococcus-aureus
43.McDevitt D, Francois P, Vaudaux P, Foster T. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol. 1994;11(2):237-248.
44.McDevitt D, Francois P, Vaudaux P, Foster T. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol Microbiol. 1995;16(5):895-907.
45.Castillo Baquero O, Rivas Meléndez A, Ávila Ulloa H. Fibrinógeno γA/γ´ (gamma A/gamma Prima) características, propiedades y su posible rol en el desarrollo de trastornos cardiovasculares. Salus. 2010;14(1):35-40.
46.Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster T. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol. 1998;30(2):245– 257.
47.Pearlstein E, Gold L, Garcia-Pardo A. Fibronectin: A review of its structure and biological activity. Mol Cell Biochem. 1980;29(2):103-128.
48.Guntaras P, Alfonso OJ. Fibronectina. Lab Actual. 1991;9(23):2-5.
49.Proctor R. Fibronectin: A Brief Overview of Its Structure, Function, and Physiology. Rev Infect Dis. 1987;9(4):S317-S321.
50.Geoghegan J, Monk I, O’Gara J, Foster T. Subdomains N2N3 of Fibronectin Binding Protein A Mediate Staphylococcus aureus Biofilm Formation and Adherence to Fibrinogen Using Distinct Mechanisms. J Bacteriol. 2013;195(11):2675-2683.
51.Foster T. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2016;35(12):1923-1931.
52.Liang X, Garcia B, Visai L, Prabhakaran S, Meenan N, Potts J et al. Allosteric Regulation of Fibronectin/α5β1 Interaction by Fibronectin-Binding MSCRAMMs. PLOS ONE. 2016;11(7):e0159118.
53.Wolz C, Pohlmann-Dietze P, Steinhuber A, Chien Y, Manna A, van Wamel W et al. Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol Microbiol. 2000;36(1):230-243.
54.Schwarz-Linek U, Höök M, Potts JR. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol. 2004;52(3):631-641.

Descargas

La descarga de datos todavía no está disponible.