Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Catalisis, enzimas y pruebas rápidas

Catalisis, enzimas y pruebas rápidas



Abrir | Descargar

Cómo citar
Catalisis, enzimas y pruebas rápidas. (2022). NOVA, 20(39), 121-150. https://doi.org/10.22490/24629448.6591

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Liliana Caycedo Lozano

    Lucia Constanza Corrales Ramírez


      Un gran número de los procesos metabólicos y biológicos son catalizados por enzimas; las enzimas son compuestos químicos orgánicos que pertenecen al grupo específico de las biomoléculas denominadas proteínas. Las enzimas poseen en su estructura molecular cuaternaria, organizaciones internas que permiten definir un lugar denominado centro activo; su función química, cinética y termodinámica se relacionan con la disminución de la energía de activación en el curso de la reacción neta.

      Los mecanismos de reacción enzimáticos que suceden en las interacciones metabólicas de los microorganismos han permitido desarrollar una serie de pruebas cualitativas que determinan la presencia o ausencia de bacterias en una muestra o un cultivo haciendo uso de técnicas rápidas que facilitan el diagnóstico clínico.


      Visitas del artículo 291 | Visitas PDF 2092


      Descargas

      Los datos de descarga todavía no están disponibles.
      1. Joaquín Ramírez Ramírez, Marcela Ayala Aceves. Enzimas: ¿qué son y cómo funcionan? Revista Digital Universitaria, UNAM. 2014; 15, No.12. Disponible en Internet: <http://www.revista.unam.mx/vol.15/num12/art91/index.html> ISSN: 1607-6079.
      2. Melo R V, Cuamatzi O. Bioquímica de los procesos metabólicos. Editorial Reverte, 2007.
      3. P. Chelikani, I. Fita and P. C. Loewen. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences. 2004; 61, 192-208.
      4. https://doi.org/10.1007/s00018-003-3206-5
      5. J. A. Imlay. Pathways of oxidative damage. Annual Review of Microbiology. 2003; 57, 395-418.
      6. https://doi.org/10.1146/annurev.micro.57.030502.090938
      7. P. Nicholls, I. Fita and P. C. Loewen. Enzymology and structure of catalases. Advances in Inorganic Chemistry. 2001; 51, 51-106.
      8. https://doi.org/10.1016/S0898-8838(00)51001-0
      9. Adelaida Díaz. La estructura de las catalasas. REB. 2003; 22 (2): 76-84
      10. Poole RK. Oxygen reactions with bacterial oxidases and globins: binding, reduction and regulation. Antonie Van Leeuwenhoek. 1994;65(4):289-310.
      11. https://doi.org/10.1007/BF00872215
      12. Rodríguez Perón José Miguel, Menéndez López José Rogelio, Trujillo López Yoel. Radicales libres en la biomedicina y estrés oxidativo. Rev Cub Med Mil [Internet]. 2001 Mar [citado 2021 Oct 26] ; 30( 1 ): 15-20. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572001000100007&lng=es.
      13. Jurtshuk P Jr, McQuitty DN. Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl Environ Microbiol. 1976 May;31(5):668-79
      14. https://doi.org/10.1128/aem.31.5.668-679.1976
      15. Sandeep Thirunavukkarasu, Rathish K C. Evaluation of direct tube coagulase test in diagnosing staphylococcal bacteremia. J Clin Diagn Res. 2014 May;8(5):DC19-21
      16. Qinfang Qian, Karen Eichelberger, James E Kirby. Rapid identification of Staphylococcus aureus in blood cultures by use of the direct tube coagulase test. J Clin Microbiol. 2007 ;45(7):2267-9.
      17. https://doi.org/10.1128/JCM.00369-07
      18. Corrales L., Ávila S., Estupiñan. S., Bacteriología: teoría y práctica. Bogotá: 1a edición, editorial UCMC, 2013.
      19. Forbes B, Sahm D, Weissfeld A. Diagnóstico Microbiológico de Bailey & Scott. 2009. 12 ed. Editorial Panamericana S.A. Argentina.
      20. Gerceker D, Karasartova D, Elyürek E, Barkar S, Kiyan M, Ozsan TM, Calgin MK, Sahin F. A new, simple, rapid test for detection of DNase activity of microorganisms: DNase Tube test. J Gen Appl Microbiol. 2009 Aug;55(4):291-4.
      21. https://doi.org/10.2323/jgam.55.291
      22. Pimenta FP, Souza MC, Pereira GA, Hirata R Jr, Camello TC, Mattos-Guaraldi AL. DNase test as a novel approach for the routine screening of Corynebacterium diphtheriae. Lett Appl Microbiol. 2008 Mar;46(3):307-11
      23. https://doi.org/10.1111/j.1472-765X.2007.02310.x
      24. Koneman, Elmer. Diagnóstico Microbiológico, España: 6a edición, editorial Panamericana, 2008
      25. Morejón García Moisés. Betalactamasas de espectro extendido. Rev cubana med. 2013; 52( 4 ): 272-280.
      26. Gonzalo Fernández Balaguer, Carmen del Águila, Carolina Hurtado Marcos y Rubén Agudo Torres. reconstrucción ancestral de una β-lactamasa y comparativa con
      27. sus homólogos actuales. An. Real Acad. Farm. 2021; 87,(2): 155 - 170
      28. Guillermo Urquizo Ayala, Dra. Jackeline Arce Chuquimia, Dra. Gladys Alanoca Mamani. Resistencia bacteriana por beta lactamasas de espectro extendido: un problema creciente. Rev Med La Paz. 2018; 24(2)
      29. C. Suarez, F. Gudiol. Estructura química de los β-lactámicos. Enferm Infecc Microbiol Clin. 2009;27(2):116-129.
      30. Karen Bush, 2018. Past and Present Perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy. 62. pp. 1076-18.
      31. https://doi.org/10.1128/AAC.01076-18
      32. Jeimmy Castañeda, Karen Gómez, Lucía Corrales, Sebastián Cortés. Perfil de resistencia a antibióticos en bacterias que presentan la enzima NDM-1 y sus mecanismos asociados: una revisión sistemática. NOVA. 2016; 13 (25): 95-111.
      33. https://doi.org/10.22490/24629448.1733
      34. Stephen J. Manual de pruebas de susceptibilidad antimicrobiana. Seattle: DATA; 2005
      35. Calvo J, Cantón R, Fernandez F, Mirelis B, Navarro F. Procedimientos en Microbiología Clínica. España: EIMC; 2011
      36. Barría C, Carrasco S, Lima C, Aguayo A, Domínguez M, KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Rev. chil. infectol. [Internet] 2017; vol.34 no.5 476 [Consultado 2021 11 22] Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182017000500476
      37. https://doi.org/10.4067/S0716-10182017000500476
      38. BIOMÉRIEUX. RAPIDEC® CARBA NP [INTERNET]. [Consultado 2021 abril 22]. Disponible en https://www.biomerieux.com.co/diagnostico-clinico/rapidec-carba-np
      39. Germán Bou, Ana Fernández-Olmos, Celia García, Juan Antonio Sáez-Nieto, Sylvia Valdezate. Métodos de identificación bacteriana en el laboratorio de microbiología. Bioanálisis. 2012; 1: 22-34.
      40. Samantha T Compton , Stephen A Kania, Amy E Robertson, Sara D Lawhon, Stephen G Jenkins, Lars F Westblade, David A Bemis. Evaluation of Pyrrolidonyl Arylamidase Activity in Staphylococcus delphini. J Clin Microbiol . 2017 Mar;55(3):859-864.
      41. https://doi.org/10.1128/JCM.02076-16
      42. Chen CH, Huang LU, Lee JH, Lee WH, Zhonghua Yi Xue Za Zhi. Presumptive identification of streptococci by pyrrolidonyl-beta-naphthylamide (PYR) test. (Taipei). 1997 Apr;59(4):259-64.
      43. Oberhofer TR. Value of the L-pyrrolidonyl-beta-naphthylamide hydrolysis test for identification of select gram-positive cocci. Diagn Microbiol Infect Dis. 1986 Jan;4(1):43-7.
      44. https://doi.org/10.1016/0732-8893(86)90055-6
      45. Bombicino KA, Almuzara MN, Famiglietti AM, Vay C. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods. Diagn Microbiol Infect Dis. 2007 Jan;57(1):101-3.
      46. https://doi.org/10.1016/j.diagmicrobio.2006.02.012
      47. Alvin Fox. Microbiology and Inmunology, University of South Carolina de Sur, School of Medicine. Chapter thirteen, Bacteriology. On Line. https://microbiologybook.org/book/bact-sta.htm. Consultado August 27, 2021.
      48. Schmidt H, Naumann G. Phosphatase-novobiocin-mannose-inhibition test (PNMI-test) for routine identification of the coagulase-negative staphylococcal urinary tract pathogens S. epidermidis and S. saprophyticus. Zentralbl Bakteriol. 1990 Apr;272(4):419-25.
      49. https://doi.org/10.1016/S0934-8840(11)80042-3
      50. Lutz Heide. New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol
      51. . 2014 Jan;304(1):31-6.
      52. Paweł Berczyński, Aleksandra Kładna, Irena Kruk, Hassan Y Aboul-Enein. Radical-scavenging activity of penicillin G, ampicillin, oxacillin, and dicloxacillin. Luminescence
      53. . 2017 May;32(3):434-442.
      54. Ercibengoa M. Assessment of the Optochin Susceptibility Test to Differentiate Streptococcus pneumoniae from other Viridans Group Streptococci. Clin Lab. 2021 Mar 1;67 (3).
      55. https://doi.org/10.7754/Clin.Lab.2020.200438
      56. Raddaoui A, Ben Tanfous F, Achour W, Baaboura R, Ben Hassen A. Description of a novel mutation in the atpC gene in optochin-resistant Streptococcus pneumoniae strains isolates from Tunisia. Int J Antimicrob Agents. 2018;51(5):803-805.
      57. https://doi.org/10.1016/j.ijantimicag.2017.12.029
      58. Suaya JA, Fletcher MA, Georgalis L, Arguedas AG, McLaughlin JM, Ferreira G, Theilacker C, Gessner BD, Verstraeten T. Identification of Streptococcus pneumoniae in hospital-acquired pneumonia in adults. J Hosp Infect. 2021;108:146-157.
      59. https://doi.org/10.1016/j.jhin.2020.09.036
      60. Barış A, Anlıaçık N, Bulut ME, Deniz R, Yücel E, Aktaş E. Evaluation of Mascia Brunelli rapid antigen test in the diagnosis of group A streptococcal pharyngitis. Mikrobiyol Bul. 2017 Jan;51(1):73-78.
      61. https://doi.org/10.5578/mb.43448
      62. Kemnic TR, Coleman M. Trimethoprim Sulfamethoxazole. 2021 Jul 18. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. PMID: 30020604.
      63. https://pubmed.ncbi.nlm.nih.gov/30020604/
      64. Guo D, Xi Y, Wang S, Wang Z. Is a positive Christie-Atkinson-Munch-Peterson (CAMP) test sensitive enough for the identification of Streptococcus agalactiae?. BMC Infect Dis. 2019 Jan 3;19(1):7.
      65. https://doi.org/10.1186/s12879-018-3561-3
      66. Savini V, Paparella A, Serio A, Marrollo R, Carretto E, Fazii P. Staphylococcus pseudintermedius for CAMP-test.Int J Clin Exp Pathol. 2014 Mar 15;7(4):1733-4. eCollection 2014.
      Sistema OJS 3.4.0.5 - Metabiblioteca |